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ABSTRACT 

We give an algorithm to compute the group of outer automorphisms of z/pZ- 
group rings of p-groups; this can also be used to test whether two p-groups have 

isomorphic group rings over Z/pZ (our original motivation). We work our way down 

the powers of the augmentation ideal, using homological methods. Careful attention is 

given to which calculations can be done with linear methods and which cannot, with 

computer implementation in mind. 

1. THE IDEA OF THE ALGORITHM 

Let us first explain the strategy: G and H are finite p-groups, and 
1F = z/pi? is the field with p 1 e ements. We would like to test whether 

FG : FH as augmented algebras .I 

*This research was partially supported by the NSF and the DFG. 

tThis research was partially supported by the NSF and the DFG. 

LINEAR ALGEBRA AND ITS APPLlCATIONS 192:355-382 (1993) 355 

0 Elsevier Science Publishing Co., Inc., 1993 

655 Avenue of the Americas, New York, NY 10010 0024.3795/93/$6.00 



356 K. W. ROGGENKAMP AND L. L. SCOTT 

This means that we would like to construct a group homomorphism 

Q: G + V(FH), 

where V(LFH) = 1 + rad(FH) are the units of augmentation one in [FH, in 
such a way that 

(1) Q is injective, 

(2) IdpI C FH consists of F-linearly independent elements. 

The second condition is not a serious problem (cf. Remark 3). 
As for the construction of e, we observe that a direct approach, by trying 

to find the generators and relations of G in IFH, is impossible even with the 
largest available computers, since IV(FH 1 = p P’l ’ if 1 H 1 = p”. Moreover, 
constructing homomorphisms is a highly nonlinear process, and hence is 
against the “nature” of computers. We thus try to linearize the problem by 
using the filtration 1 + rad’(F H) of V(F H > and play nonabelian cohomology 
versus abelian cohomology. 

The inductive procedure is as follows: 

1. Assume that we have constructed a homomorphism 

ei :G + 1 + rad([FH)/[l + rad”(LFH)]. 

2. Then we would like to know whether pi can be extended to a homomor- 
phism 

gi : G + 1 + rad(lFH)/[l + rad’+l(FH)]. 

This question we have to answer for each of the above maps pi. 
3. Once we have answered the question of whether ei extends to oi, we 

have to find all extensions 

Gij :G + 1 + rad(FH)/[l + radi+‘(FH)] 

of ei. 

However, the situation is not quite as complicated as it looks, since the 
question of extendibility of a homomorphism ei depends only on the - 
conjugacy class of pi under conjugation with elements in V(FH), and for a 

‘That is, the above isomorphism C$ commutes with the augmentations of both FG and 
FH. 
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fixed ei which extends, we only have to find representatives of the V(lFH)- 
conjugacy classes of the various extensions. To take this into account is a 
necessity because of limited storage space. This is now a situation where 
cohomology comes in quite handy; it enters because cohomology classifies 
“things up to conjugacy”: Every homomorphism 

pi :G + 1 + rad(FH)/[I + rad’(FH)] 

gives rise to a multiplicative l-cocycle (cf. Section 2) pi(g) = Q”(g) . pi(gP i >, 
where 

e(,: G - 1 + rad(FH)/[l + radi(lFH)] 

is a fixed homomorphism, and conversely. Moreover, modulo I-coboundaries, 
we get exactly the homomorphisms ei up to conjugacy with elements in 
V(FH). Abelian - even central - cohomology enters in the question of 
whether or not ei extends to some ei. The obstruction is an element in 
H’(G, radi(FH)/radi+‘(FH)) (cf. L emma 3). Computing this cohomology 
group is a linear problem if one uses relation modules. Once we know that ei 
extends, we want to find all extensions to Gij of ej up to conjugacy with 
elements in V(FH). It is easy to find the extensions up to conjugacy in the 
H-trivial group 1 + rad’(FH)/[l + rad”+“(FH)]; the orbits are then 
parametrized by H ‘(G, 1 + rad’(lFH )/[l + rad”+ ‘(FH >I). However, in order 
to classify the extensions up to conjugacy with elements in V(lF H > - a highly 
nonlinear problem - we invoke Serre’s exact sequence of nonabelian coho- 
mology sets, and eventually will be able to even linearize this problem. 

The induction is - because of the limited storage space - not quite as 
simple as explained above: The inductive step goes first from homomor- 
phisms 

e:G + 1 + rad(ffH)/[l + rad’(5H)] 

to homomorphisms 

6: G + 1 + rad(FH)/[l + rad”(FH)], 

which means that we have to compute second cohomology groups with 
nontrivial but still abelian coefficients-however, this is also a linear problem 
using relation modules. We then have the extensions 6 classified up to 
conjugacywith elements in the abelian group 1 + radi@ H )/[l + rad”(FH >I. 
Now we can use Serre’s exact sequence of nonabelian cohomology sets in 
order to get the homomorphisms Q : G + 1 + rad@H)/[l + rad’+ ‘@HI] 

classified up to conjugation with elements in V(FH ). 
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To make the paper available to a larger audience we have filled in most of 
the details on nonabelian cohomology and explained the connection between 
automorphisms and cohomology in detail. 

We would like to point out that the algorithm developed here can also be 
used to 

(1) compute Out@H), 
(2) compute Out(G), where G is a p-group of pretty large order (cf. [5]). 

M. Wursthom in his Diplom thesis in Stuttgart has implemented the 
algorithms developed here in a modified form in his program package 
SISYPHO? and used them to show all 2-groups of order 64 are determined by 
their Z/2 * Z group rings. 

2. NONABELIAN COHOMOLOGY 

The material in this section is well known, but we review it for the 
convenience of the reader and to set notation. Let G and W be groups, and 
assume that we have a group homomorphism Q : G + Au&W 1. That is, we 
have an action of G on W, which we shall also denote by Q, writing e(g)w for 
its action on w, for g E G and w E W. Sometimes we write gw if Q is to be 
understood from the context. If we are given a homomorphism Q : G + W 
or, more generally, Q : G + W/C, where C is a central subgroup of W, then 
we also write e for the induced homomorphism G -+ A&W) given by the 
induced conjugation action. 

DEFINITION 1. 

(1) A multiplicative 1-cocycle of G with coefficients in W is a map 
p: G + W with p(gh) = p.(g). [g/.&)], g, h E G. 

(2) A multiplicative 1-coboundary is a map of the form pu( g) = 
W’ “(w-l) for some w E W. 

(3) Two cocycles v and p are said to be equivalent if there exists w E W 
such that v(g) = w * p(g) *“(w-l) for all g E G. 

‘This program can be obtained upon request from the first author. Besides ordinary 
calculations in modular group rings, it allows calculations with ideals and Lie series and the 
computation of cohomology groups of low degree. The program is written in (ANSI) C, and 
it is implemented for Sun 3/60, IBM RS6000, HP 9000/7xX, ATARI TT, and PC 386/486 
under OS/2. In this implemented version it also can be used to compute the group of 
outer automorphisms of finite p-groups. A detailed description of the program will be 
published by M. Wursthorn in [5]. 
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The next result is straightforward. 

LEMMA 1. Every cohounday is a cocycle, and being equivalent is an 

equivalence relation. 

DEFINITION 2. By Hl(G, W) we denote the set of equivalence classes, 
viewed as pointed set, where the point consists of the class of coboundaries. 
[Sometimes we shall omit e; note, however, that H,‘(G, W) depends strongly 
on the action e.] 

It should be noted though that H,‘(G, W > is in general not a group; it is a 
group if W is an abelian group. In this case the multiplication is given as 

(p- u)(g) = #u(g)* v(g), induced by the group multiplication. We shall 
need 2-cocycles only in case of W abelian; for nonabelian 2-cohomology we 
refer the interested reader to Serre’s book [4]. So we assume now that W is 
an abelian group. 

DEFINITION 3. 

(1) A multiplicative 2-cocycle is a map p: G X G + W satisfying 

/.L(xy,z)pp(x, y)-+(y’+P(? Y”) = 1. 

(2) A multiplicative 2-cobounday is a map of the form 

Pu(~, Y) = [f<4 Tf(Yr IfbY) 

for some function f : G + W. 

It turns out that a 2-coboundary is a 2-cocycle, and the 2-coboundaries 
form a subgroup inside the group of 2-cocycles, where the multiplication is 
induced from the multiplication in W, and the quotient is HQ2(G, U), the 
2-cohomology group. In this case two cocycles pi and p are equivalent if 
p,(,g, 11) = [f(g) * g_f(h>]P1 . p(g, h) *f(gh). Assume that we are given an 
exact sequence 

of groups (not necessarily abelian) on each of which G acts compatibly, say as 
e’, e, and @’ on W’, W and W” respectively, i.e. such that the maps (Y and 
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/3 are G-equivariant. By Hi(G, W) we denote the group of fixed points in W 
under the G-action via e. Then we get a long exact sequence of pointed sets 

(cf. Ml) ( a rou is in a natural way a pointed set): g p 

1 + H,?(G, W’) 3 H,‘(G, W) f? f$,!,(G, W”) 

ft H;,(G, W’) 5 H,‘(G, W) 5 H;,(G, W”). (1) 

The maps cri and p’ for i = 0,l are self-explanatory, so we just give the 

definition of the connecting map H$(G, W”) 5 H,!(G, W’). For a fixed 
point u;” E W” we pick a coset representative under P, say w E W, and 
define the l-cocycle dO(w”> by g + w . e(s)(w-r). 

Assume now that W’ is central in W. Then we have a further map 

H;,(G, W”) s Hc?(G, W’). (2) 

which is described as follows: For a l-cocycle p : G + W” with re- 
spect to e”, we choose a coset representative under /3, say /i(g) in W, for 
each p(g), g E G. Then J1( ~1: G X G + W’, defined by GcL(g. h) = 

a’(g, Ia). G(g) * @‘“‘@(h), is a 2-cocycle. 
For later applications we have to compute the image of 

a’ : H$(G, W’) + H;(G, W). (3) 

Note that or is just a map of pointed sets. However, H$(G, W”) acts via do 
on H$(G, W’), and the orbits under this action are precisely the fibers of the 
above map (Y ’ into H$G, W >. More precisely, the inverse image under P ’ 
of $?(G, W”) in W is the centralizer modulo W’ in W of G, C,(G, W’) = 
(w E WIW. e(g)(w-‘) E W’}. This centralizer acts on H$(G, W’) - cf. the 
definition of do - as follows: 

b(g) = c-p(g) *Q(g)(c-l), p E H;(G,W’), c E C,(W,W’) 

=c. @W( (y 1) . [e(s), . p( g) . @W( c- ‘)I 
(4 

This formula also shows that ‘b has indeed values in W’. Also “p is a cocycle, 
and is equivalent to p if c belongs to W’. 
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To ease our notational burden, we will henceforth sometimes use the 
same notation for a I-cocycle class and its representing cocycle. 

The image of cx i is thus parametrized by the orbits under C,(G, W’). 
For computational purposes, the orbits under conjugation action are difficult 
to handle. Therefore we shall only apply the formula in Equation (4) in a 
situation where the orbits are “linear.” We summarize this as 

LEMMA 2. Assume that W’ is abelian and that W acts trivially on W’. 
Then the set of orbits of H,‘.(G, W’) under C,(G, W’), i.e. the image of (Y’, 

is given by the “linear cosets” 

t I 
“p c E C,(G,W’), P E H;,(G,W’)withCp(g) =c* e(q c-1) . p(g)) . 

3. HOMOMORPHISMS AND COHOMOLOGY 

Let G and U be groups. Given a homomorphism Q : G + U, then all 
other homomorphisms (T : G + U are, up to conjugation by elements in U, 
parametrized by H1(G, U). T o see this, assume that a homomorphism u is 
given; then CL(g) = a(g). ~(g)-i satisfies 

/-4&l =u(g>.a(h).e(h)-‘.e(g)~’ 

= a(&?) dd ~l.e(“)[~(h).e(h)-‘], 

and so p is a I-cocycle relative to e. Conversely, the same calculations show 
that if p is a I-cocycle, then a(g) = p(g) . e(g) is a homomorphism. So, 
modifying e by I-cocycles (with respect to e), we get all possible homomor- 
phisms from G to U. 

Assume that a(g) = ‘*r(g) for some fixed u E U - i.e., o and 
r are con’ugate. Then 

I? 
p,(g) = u(g) f e(g)V’ = Wg) * p(g)-’ = 

u * pu,(g). e ‘)u-i, and so /.Q, and p, are equivalent I-cocycles, and con- 
versely. Thus cr and r differ by conjugation with a unit if and only if the 
associated cocycles are equivalent. Thus we have shown: 

LEMMA 3. Given a fixed homomorphism e : G -+ U, then every home- 

morphism cr : G + u is of the form m(g) = p(g). e(g) for some l-cocycle 

p with respect to e. Moreover, two homomorphisms CT and r are conjugate 

if, and only if, the associated cocycles are equivalent. 

We next turn to the question of liftings of homomorphisms. Let V 
be a normal subgroup in U, and assume that we have a homomorphism 
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Q : G -+ U/V. There are two parts to the obstruction to lifting e to a 
homomorphism @ : G -+ U. 

PROBLEM 1. 

(1) Conjugation by e(g) g ives a homomorphism, also denoted by e, from 
G to Aut(U/V). Can we find an action 0 of G on U which is compatible 
with e? 

(2) If 6 can be found, when does it arise from a homomorphism 
(I : G -+ U; i.e., can we lift e to a homomorphism from G to U? 

For the sake of simplicity, and also because the nonabelian situation does 
not give any new insight, we shall assume from now on that V is abelian. In 
that situation 0 always exists: Let Q(g) b e any coset representative of e(g) in 
U; then conjugation by o(g) induces a well-defined action of G on U. 

This induces a unique homomorphism, also denoted by e : G + Au@), 
compatible with the action e of G on U/V. Note that for this construction 
we do need a homomorphism e : G + U/V and not just an action of G on 
u/v. 

Let ei(g> be any coset representative of e(g) in U, g E G, and define 

i-Q> h) by 
e,(g). e,(h) = &s 11) . elk% (5) 

i.e., v is the obstruction for er to be a homomoThism. Then p is a 
2-cocycle of G with values in V with respect to the action e (cf. Definition 
3). In fact, the associativity of the multiplication implies 

[e,(x).e,(y)].el(z) =~L(x,y).~(xy~~)‘el(xY~)~ 

el( x> . (ed y) . e,(4) = ed4 .14 Y> 4 . ed 4 

However, the actions of ei and e coincide on V, and thus p is a cocycle on 
V with respect to e. 

DEFINITION 4. The cocycle /.L from (15), and also its equivalence class in 
$,(G, V ), will be denoted by A( e>. 

Note that the class of A( e> in Hl(G, V) does indeed depend only on p. 
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LEMMA 4. Q can be lifEed to a homomorphism 6 : G + U if, and only if, 

A(e) is a %coboundary. 

proof. Assume that A( Q) = p E Hc,(G, V) is a coboundary (cf. Defini- 

tion 3), say A(e>(g, h) = pcL(g, h) = [f(g). eca)fCh)l-’ *f(gh) for SOme 
function f : G + V. Then 

@k) =fk) *e,(g) (6) 

is a homomoprhism; in fact, 

f( 8) . ed 8) =f( gh) . el( $1. 

(Note that pi acts as e on V.) n 

We now turn to the problem of finding all liftings of Q : G + U/V to 
(T : G + U, provided we already have constructed one lifting @ as in Equa- 
tion (6); i.e., A( Q) (cf. Definition 4) is a coboundary. 

LEMMA 5. All other li$ngs u are of the form p * 6, where p : G + V is 
a l-cocycle with respect to the conjugation action induced by 6 on V, and 
conversely. Two lifiings CT and u ’ are conjugate by some v E V if and only if 

the corresponding I-cocycles p and p’ represent the same element in 
H&G, V >. 

REMARK 1. The above lemma gives the liftings up to conjugacy with 
elements in V; however, we are really interested in the liftings up to 
conjugacy with elements in U. It should be noted, though, that different 
elements in H$(G, V) might give rise to conjugate (in U) homomorphisms. 
This is where the exact sequence (1) of nonabelian cohomology sets comes 
into the picture. In general U and U/V will not be abelian. According to 
Equation (5), the image of Hi(G, V) in H/(G, U> [cf. the exact sequence 
(l)], induced from the exact sequence 

l+V+U+U/V+l, (7) 

parametrizes the liftings exactly up to conjugacy with elements in U. 
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Before we turn to the proof of Lemma 5, let us make some comments: 
Let us elaborate on the part of the exact cohomology sequence (l), which is 
relevant in the above application. We have the exact sequence 

H;( G, V/V) 5 ZZ/( G, V) Ly1 - f&‘(G U), (8) 

where Z@G, V/V) := {u * V : e(g)u * V = u . V} is the set of fixed points. 
Note that ZZp(G, U/V) 
be found in 741. 

is a subgroup of U/V. the proof of the exactness can 

It should be noted however that though ZZi(G, U/V) and H&G, V) are 
abelian groups, do need not be a group homomorphism. 

Proof. If we put p(g) = q(g). &g)-i, then (cf. Lemma 4) 

p(gh) = a(gh)$(gh)yl = a(g)+(g)-‘e!‘(“)[rr(h)+(h)-‘1, 

and p is a I-cocycle with respect to 0. The same equation shows that for 
every I-cocycle II, the map a(g) = p(g) * o(g) is a homomorphism. 

Assume now that for crj(g) = pi(g) * a(g), i = 1,2, we have vi(g) = 
“a,(g) for some fixed u E V. Then 

and so pu, and pe are equivalent (cf. Definition 3). The same equation shows 
that if Z+ and Z+ are equivalent, then the corresponding homomorphisms 
are conjugate by an element in V. n 

4. UNIT GROUPS OF RINGS 

We assume from now on that A is a ring, and we denote by AX its 
multiplicative group of units. Z will be a two-sided nilpotent ideal in A. Thus 
1 + Z is a normal subgroup in A ‘. We note that if I” = 0, then we have a 
natural isomorphism 

(1 + Z;) = (I, +) definedby 1+x*x, (9) 

since (1 + r ) . (1 + y > = 1 + x + y ; in particular, 1 + Z is an abelian group. 
We assume from now on that 1’ = 0. 
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Let e : G + AX/(1 + I) be a homomorphism. Since I2 = 0, the conju- 
gation action with a coset representative of e( g > in A ’ induces an action on 
1 + I, also denoted by e, which makes 1 + Z and Z into G-modules. 

We shall now apply the results of the previous section to the present 
situation: Because of Remark 1 we have an induced natural isomorphism: 

ZZ,(G,(l + I;)) = H;(G,(Z +)), i = 1,2, ( lOa) 

via 

p(g) - p(g) - 1 and ~(g,h) ++ P(c,~) - 1. ( lObI 

REMARK 2. In order to find all liftings of e to a homomorphism @ from 
G to AX, we have to follow these two steps: 

(I) Compute whether the 2-cocycle A( e> associated to e (Definition 4) 
is represented by zero in ZZl(G, I) under the isomorphism in (10). Note that 
this involves the natural isomorphism in (9). If this is so, then Lemma 4 gives 
a natural construction for one lifting 6, provided we can find the 2-coboundary 
associated to A(e); but this is given by the formula in Equation (5). 

(2) All other liftings, up to conjugation with elements in 1 + I, are 
obtained as (T = V. 6, where v runs over representatives of 1-cocycles in 
ZZi(G, Z) (cf. Lemma 4). Again we have invoked the natural isomorphism in 

(10). 

Let us recall that we actually want the liftings only up to conjugation with 
the units in A ‘. We shall come back to this problem later. Note that all these 
constructions depend only on the homomorphism e : G + AX/(1 + I>. We 
now turn to the special situation of group rings. 

DEFINITION 5. G and H are finite p-groups; ‘8 is the field with p 
elements; FH is the group ring of H over F; 1 = I(FH > is the augmentation 
ideal of F H, which is at the same time the radical of FH; and n, is defined as 
the index of nilpotency of I (I”0 # 0, but In,,+’ = O), where Z(G) is the 
augmentation ideal of LFG. 

The aim is to develop a test as to when FG = FH as augmented algebras. 
This will be achieved by finding all homomorphisms, up to conjugation, from 
G to FH/ln for “large” n, depending on the computer power available. If 
2 . rr > n,, then Lemmata 4 and 5, together with the exact sequence (1) of 
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cohomology sets, will give all augmented homomorphisms G + FH up to 
conjugation. 

Our program will test whether or not EC/Z(G)” 2: [FH/Z”, and in this 
process we compute all possible isomorphisms up to inner isomorphisms. [In 
many situations, even this might be too coarse, since the algorithms are very 
time consuming, and therefore one should also invoke the automorphisms of 
the group G. Note that Aut(G) acts on the set of these isomorphisms 
lFG/Z(G)ll + FH/Z( H )“, and one does consider only one representative 
from each orbit under this action in passing from n to n + 1.1 

This construction will be done in small steps according to the filtration 
induced by the ideals I”. The algorithms from Lemmata 4, 5 will give only 
homomorphisms from G to FH/Z”; however, we are interested in epimor- 
phisms. 

This is remedied by 

REMARK 3. 
such that Q(G) g 

Let Q : G + FH ‘/(l + Z,,), n > 2, be a homomorphism 
enerates [F H/Z2 as a ring. Then e(G) generates FH/Z” as a 

ring. In fact, the graded version with respect to the powers of the radical of 
FH/Z” is an epimorphic image of the tensor algebra of Z/Z’; whence the 
statement. 

Assume that we have already constructed one homomorphism 

Q: G + (FH/Z”-‘)X = FHX/(l + Z)n-l 

We recall that then all homomorphisms, up to conjugation, are obtained by 
modifying Q with 1-cocycles from classes in H$G, FH x/(1 + I)“- ‘> (cf. 
Lemma 3). Now H$G, FHX/(l + I)“-‘) is not so easily computed as a 
nonabelian cohomology set, and so we shall filter it by abelian cohomology. 
For an integer n, let [n/2] be the largest integer < n/2. We have the exact 
sequence 

0 + 1 +Zb+0/21/Zn- -+ FHX/( 1 +I”- ‘) + [FHX/(l +Z[(n+1)/2] ) -0. 

Since Z[(n+‘)/‘I. z[(n+‘)/‘I c 1” c I”-1, the group 1 + ~[(n’l)/‘l/~’ -1 is 

abelian, and so any homomorphism 0 : G + FH ‘/cl + Zrcn + ‘)“I) induces 
an action on 1 + Z’(n+‘)‘2]/Zn-1, and hence, if 

{G,>...>O,}> 0, : G + FHX/(l + Z[(n+1)‘21) 
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are the homomorphisms, up to conjugation in lFHX/(l + I[(“+ 1)/21), which 
lift to homomorphisms 

bb...~e,L e, : G -+ FHX/(l + In-r), (11) 

then all homomorphisms G + FHX/(l + I”- ‘) - up to conjugation by 
elements in the group (1 + Zrcn+1)/21)/(1 + I”- ‘> in some sense - are given 

bY 

where 

I+, E He’,& 1 + Z b+l)/21/Zn-l) E ffiz(G, Z[(n+l)/21/Zn-l)~ (12b) 

We abbreviate this set by 

Hi,(G, I[(“+ 1)/21/Zn- ‘) . pi, 1<i<t. (13) 

Note however that we have not yet achieved our initial goal of parametrizing 
the set of homomorphisms G + FHX/(l + In-l) up to conjugation in 
[FZF/(l + I”-‘); cf. L emma 5. (We have described them all, but there may 
be repetitions under conjugation.) 

At this stage of the algorithm the above set is the image of our set in 
ZZ$G, FHX/(l + I”-‘>>, which by the exact sequence (1) of cohomology 
sets is just the image of 

ff,‘,(G, 1 + Z[(“+‘)/21/Znp’ ),‘d”( ZZ;(G, [FHX/(l + Z’(“+1)‘2’))) 

under (Y, [cf. (3) and Lemma 21. We shall invoke this at a later stage, where 
we can use “linear methods.” 

So the set in Equation (13) is a parametrization of all homomorphisms 
G + FHX/(l + Z”-l>, h’ h w rc we have obtained inductively. We now want to 
find all homomorphisms G + FHX/(l + I”) “up to conjugation.” This 
process has to be done for each ei separately. Note that we do not have to 
test each homomorphism G + FHX/(l + In-‘) but only the maps pi, 
1<i<t. 
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In order to see this, let Q be one of the pi’s, which is a lifting of 
Qi : G + FHX/(l + Z ten+ ‘)/‘I) Let us recall that we have exact sequences 

0 + 1 + In-‘/z” + FP/(l + Z”) -+ 5HX/( 1 + I”- ‘) + 0 

and 

0 + 1 + z”P’/z” --) 1 + p+w1/p + 1 + p+w/zn-1 -+ 0, (14) 

where the G-action is induced from e : G + lFHX/(l + I”- ‘). 
Let el : G + iFHX/(l + I”> b e a set theoretical lifting of the homomor- 

phism e. 
The 2-cocycle A( e)(g, h), in ZZi(G, 1 + ZnP1/Zn), was defined in Defi- 

nition 4. This is the “connecting homomorphism” associated to the sequence 
(D-note that 1 + I”-‘/I ” is a trivial G-module. On the other hand, the 
exact sequence (14) also gives rise to the connecting homomorphism d’; note 
that here we have abelian cohomology. We recall the definition of d’ [cf. 
Equation (2)]: Let (Y be a 1-cocycle from G to 1 + ZICn+ 1)‘21/Zn- ’ with 
respect to e. Then a’(a)(g, h) = a(gh)-’ . cw(g> . Ed. 

We have seen above in Lemma 4 that p. p [cf. Equation (12)] can be 
lifted if, and only if, A( p. e) is a 2-coboundary, i.e. is equal to 1 in 
EZ;(G, 1 + In-‘/Zn). S o 1 remains to show that A( p. e> = 1 is equivalent ‘t 
to A’(e) * ai( p) = 1. Using the above definition of d’, we obtain 

pe(g)*pe(h) =P(&e(ghW* 

= P(g). @($L( h) . A( e)( g, h) * et gh) 

= P(C). @‘%(h) * A( eN g, h) 

= al(p) .A( e)(gJ) dg4 .ekh) 

Again using the fact that 1 + I[(“+ ‘)/‘]/Z n-1 is commutative, we conclude 
that A( pe) = a’( ZJ) . A(e), as claimed. 
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Recall that the exact Sequence 14 gives rise to the exact sequence-all 
groups are commutative- 

1 + H,‘(G, 1 + I”-i/Z”) + H,‘(G, 1 + Z[(71+1)‘21/Zn) 

: H;(G, 1 + Z’(n+1)‘2]/Zn-1) + H;(G, 1 + In-i/Z”). 

Hence if p * e does lift, so does Im(q) * p * Q. Thus we have proved: 

LEMMA 6. Some element in the “afine space” H’(G Z[(n+1)‘21/Zn-1) 

*Q - here e is one of the maps pi in Equation (ell)’ - can be lified 

to a homomorphism (T : G + IFHX/(l + I’“) if, and only if, A(Q) E 
Ht(G, 1 + In-‘/Z”) lies in the image of the map 

d’ : H,‘(G, 1 + Z[(n+1)‘2]/Z”-1) + H,“(G, 1 + Z”P1/Z”). 

In that case the elements p * p which can be lified are those satisfying the 

condition A( Q) = a’( z.-‘). 

For computational purposes we note that Hi(G, 1 + ZnP1/Zn) is inde- 
pendent of e, since In-‘/Z” is a trivial G-module. 

Let us summarize: Starting out from the parametrization in Equation 
(12), where (Q,} is a set of representatives for liftings to lFHX/(l + Z”-l) 
up to conjugacy in [FH ‘/cl + Z ten + 1)/21) of the homomorphisms 

Gi : G + FHX/(l + Zt(n+‘)/2]), and p is determined up to conjugacy with 
1 + Zt(n+1)/21 / I”-‘, we have now constructed all possible liftings G + 
LFHX/(l + 1”) up to modifications by H’(G, ZnP1/Zn>, as follows: 

LEMMA 7. After renumbering, if necessary, let pi E 

H ‘(G, I[(“+ ‘)/‘]/ZnP1) be chosen such that pi . pi, 1 < i < 7, li$ to 

(F$‘/(l + I”) according to Lemma 4. Then all the liftable maps are given by 

Zm * pui * pi, 1 < i < r, where 

Im = Im Hi,(G, 1 + Z 
( 

b+1)/21/9 5 f$(G, 1 + I""+"/'1,Z"-1)). 

Proof. This follows directly from Lemma 4. n 

If we pass from n to n + 1, we have - in case [(n + 1)/21 # [(n + 2)/21 

- to invoke a process of reparametrization: The natural map 

yi : H;,(G,l + Z[(n+l)/21/Zn-1) + H;,(G,l + Z[(n+1)/z1/Z[(n+2)/21) 

sends Im to r,(Im) c H$G, 1 + Z ICn+ 1)/21/Zt(n+2)/21). The maps in the set 

ri(Im). pi * ei from G to [FHX/(l + I [cn + 2)‘21) are precisely the homomor- 
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phisms which lift to lFHX/(l + I”); h owever, they are not yet partitioned 
according to conjugation in [FHX/(l + Zi(“+2)/21). But luckily enough, 
1 + Z[(““)~2~/Z~(n’2)~21 is a quotient of [FHX/(l + Zt(“+2)/21) on which 
[FZP/(l + z Kn+2)/2]) acts trivially. Thus we can use Equation (4) to compute 
the orbits of H’(G, 1 + Z[(“+1)/2]/Zi( n+2)‘21) under the action of the central- 
izer of G in [FHX/(l + Z i(” + ‘)/‘I) modulo lFHX/( 1 + I[(“+ 1)/2]) in a linear 
fashion3 Let now &i, . . . , 6s be representatives of the orbits generated by 
-yi(Im) * pi * pi, for 1 < i < T under the above action. Then 6i,. , 6s takes 
the r6le of oi, . . ,o, in the inductive process. 

Thus we have reached the point where we can apply induction. 
This is a theoretical construction to obtain all possible homomor- 

phisms G + [FHX/(l + Z”) “up to conjugation,” once the homomorphisms 
G + [FHX/(l + I”-‘) are known “up to conjugation.” We now come to the 
practical computations. 

5. COHOMOLOGY OF IDEALS AND BIMODULES 

5.1. Generalities 

Let A be a ring as above, and G a group which acts via Q on AX or on 
an ideal I. We could also replace Z by a subquotient Zn/Zm, or more 
generally by any [FG-bimodule. 

T compute ZZi(G, AX) amounts to computing fixed points, which is just 
the solution of a set of linear equations, depending on the number of 
generators of G. 

We next turn to the computation of ZZi(G, Z). For a two-sided ideal Z in 
A we have a natural isomorphism ZZ,‘(G, Z) = ZZ,‘(LFG, I), where the latter 
are algebra derivations modulo inner derivations. The natural map from 
I-cocycles to derivations, p(g) + S(g) = p(g) * e(g) induces the above 
isomorphism. It should be observed that for this isomorphism we do not need 
a homomorphism G + AX, but only an action e of G on A or even only on 
I. One advantage of ZZi(lFG, I) over H,‘(G, I) is that a computer likes 
multiplication better than conjugation. 

5.2. Computation of H,‘(ff G, I) 

For the rest of this section our group G is now finitely presented. So G is 
given by generators and relations: 

G=(g, ,..., gv;R1,...,&& (15) 

“The point here is that we want to reduce as many operations as possible to linear 
operations in order to speed up the calculation. 
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In a specific example we have a group of order 3” given as 

G = (a, b, c : a9 = 1, bg = 1, c3 = 1, ab = ba, “a = ab3, “b = a”b). 

The derivations are now determined by 

6( gi) = xi E I, l<i<v, 

and these elements { xi}i ~ i $ v have to satisfy 6(Rj) = 0. Using the derivation 
rule and the G-action on I, the element i3(Rj) is expressed in terms of the 

(‘iJlgi<v’ For example 

Q’) = 4(g)~qgi-1) + QPe(g’-‘) 

by induction. H ence in the above example we get the relations 

0 = 6(c”) = &l(2) .6(c) + e(c) * S(c). Q(C) + 6(c) * Q(2), 

and the relation ab = ba gives 

6(aeb) = e(u).c?(b) + 6(a).~(b) 

=6(b.a) = e(b).s(a) +8(b).@(a), 

and so we must have 

p(u).6(b) + s(a).@(b) - e(b).s(a) -a(b).@(a) =O. 

Each 6(Rj) is to be interpreted as an If-linear map D : I(“) + I, associating 
with each v-tuple (xi), 4ib v the value 6(R .). We thus obtain an [F-linear 
mapping D : I(“) + Z’“O’, if we take all rela&s into account. The kernel of 
D is the space of the [F-linear derivations with values in I. This is computed 
as solutions of a system of linear equations. 

We next have to compute the subspace of the inner derivations. Above we 
have interpreted a derivation as a v-tuple (xi>, i i B y, where xi is the value of 
the generator gi under the derivation, 1 < i < v. For the inner derivations 
we choose an If-basis {u,} of I, and consider the subspace of the derivations 
generated by {(xij>iGi, J with xij = gi * r+ - 25 . gi. This is the space of 
inner derivations, and now it is easy to find coset representatives, { 8k}l $ k ~ d, 
which form an [F-basis for ZZ,‘([FG, I>. In order to obtain a basis of ZZ,‘(G, I), 
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we form /.+(gi) = 6,(g,). e(gi)-‘. Th’ is completes the computations of 
abelian I-cohomology of ideals. 

We point out that we have computed H,‘(G, I) by listing genuine 
I-cocycles which form an F-basis when reduced module I-coboundaries. In 
general the ideal Z will be a power of the augmentation ideal I( H > of FH, 

which has an F-basis (h - 1, h E H \ (1)). 
If G is a p-group and the presentation (15) is a minimal presentation of 

G,thenIG =gi - l)lg,4u is a minimal system of generators of Z(G), since 

iGiJlgi$v is an F-basis for Z(G)/Z(G)“. More generally, the elements 

G? . *** . G:‘u, n, + ... +n, = 12, CT, # 0 

form a set of generators for Z(G)“, and they form an IF-basis for 
Z(G)“/Z(G)“+ ‘. This basis is adjusted to our filtration of the augmentation 
ideal. With respect to this basis the multiplication is quite easy, since one only 
needs to store the additive commutators [G!, G,] = Gi . Gj - Gj * Gi. 

5.3. Computation of H” u&h Trivial Coefficients 

Now G and H are finite p-groups, Z := I( H > is the augmentation ideal 
of FH, and char(F) = p. We know that I”- i/Zn is a trivial G-module both 
under conjugation and under left multiplication. Then the homomorphism Q 
does not matter, and we just have to compute H “(G, T), where T is a trivial 
G-module. 

The definition of H “(G, T), w ic we have given previously, is not at all h’ h 
suited for computation, but one strength of the cohomological interpretation 
of our problem lies in the fact that, using another interpretation of H ‘(G, T), 

we can compute the latter very easily. In order to give this interpretation, we 
have to construct projective resolutions. The following constructions are very 
explicit and suited for the computer. 

We have augmentation sequence of e-sided FG-modules 

where the augmentation map F sends g E G to 1. Z(G) has an F-basis 

k - l}g E c \ (1)’ Moreover, a set of generators of Z(G) as left [FG-module is 

given by {gi - 111 4 i G v’ where {gill Q i G v is a minimal set of generators of 
G. Hence we obtain an exact sequence of left FG-modules 

0 + R” + & FGe, z Z(G) + 0. 
i=l 

(16) 
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where C#I is induced from e, + gi - 1. Then C$ is surely an epimorphism. 
Note again for computational purposes that R2 as kernel of C#J can be 
computed via a system of linear equations as a subspace of CD,“=, FGe,. We 
can in fact list a natural set of generators for R” via the Fox derivative: The 
presentation (15) of G is tantamount to an exact sequence of groups 

where F is free on the elements {fi>l $ i G II and $’ is induced from h + gi, 
1 < i < n. The augmentation ideal I(F) of [FF is iFF-free on the elements 

vi - lll<i<,,. \ \ We interpret the relations R, as elements in F. Then we have 
a unique expression 

Rj - 1 = cgij. (fi - 1) with Glj E [FF. (17) 

Let xi1 be the image of gii under the natural map IFF -+ LFG. Then the 
element 

W, = xxijei E @ FGe, 
i=l 

lies in R”, 1 <j < vO, and in fact, these elements generate R2 as left 
module. We now have to quote some more or less well-known facts: 

THEOREM 1. 

(1) R2 does not have a projective direct summund, since G is a p-group. 

And so Cl2 nbove is indeed the second syzygy of the trivial module, and hence 

CBiVx 1 [FGe, is the projective cover of I(G).4 
(2) One has 

H”(G, IF) = Horn ,&fl’,[F) = (n2/l(G) .fl”, 

taking into account that [F is u trivial G-module.’ 

Note that above we have computed lR2 inside @,“= I LFGe,, and thus we 
can easily compute @/l(G) . R2, and hence also H 2(G, IF) = 

HomIF(fi2/I(G). a’, iF). 

41t ws shown in [I] that {gi - lJ1 ~ I ~ y is indeed a minimal set of generators of I(G), 
provided G is a p-group. 

“We refer to [l, 31. 
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5.4. Various Descriptions of H 2 
Let U be a group, and V an abelian normal p-subgroup of exponent p, 

which lies in the center of U. Assume that we have a homomorphism 
Q:G + U/V. 

LEMMA 8. The conjugation action of G on U/V induced from e can be 
lifted to an action of G on all of U. 

Proof. We have to construct a well-defined homomorphism 
0: G + Aut(U). Let e(g) and Q’( g> be two coset representatives of 

e(g) in U. Then o(g) * v(g) = e’(g) for some u(g) E V. Thus 

6(g). u(g) * u . u(g)-l * o(g)-’ = o(g). u . (?(g>-l, V being central. 
Hence the action can be lifted. Note that in order to give an action on V we 
only needed V to be abelian; however, to extent it generally to all of U, V 
had to be central. n 

We recall the various equivalent definitions of H “(G, V > for G acting 
trivially on V. 

DEFINITION 6” 

(1) The definition via factor sets: A factor set f is a function f : G x G 
+ V with 

A factor set is said to be principal if it is of the form 

for some function 9 : G + V. H&(G, V) is the quotient of the factor sets 
m0dd0 principal factor sets. H&(G, V) can then be identified with equiva- 
lence classes of group extensions 

where the factor set is given by choosing coset representatives xF: of g in X, 
and then defining f<g, h) via 

Xg’Xh - -f(g> h, 'xgh. (18) 

‘This definition has an analog also for nontrivial modules 
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(2) The definition via the relation module: Now G has to be a p-group 
(cf. [l]). Choose a minimal free presentation of G: 

l-Rd+G-1, (19) 

where F is a free group on v elements (A}, $ i g v and gi = +‘<A>, 1 < i < v, 

for a minimal set of generators of G. R is then the normal subgroup 
generated by the relations. Let R’ be the commutator subgroup of R. Then 
R/R’ is an abelian group, which we write additively, and G acts on it by 
conjugation via coset representatives in F/R’. We make this into an [FG- 
module by tensoring with B/p& E = lF % R/R’. Then E is called the 
relation module modulo p with respect to the exact sequence (19). It should 
be noted that under the above assumptions on G, E is the second syzygy for 
F as lFG-module (cf. [l]), which we have denoted earlier by 0’ [cf. (16)], and 
so it is unique up to natural isomorphism (we shall come back to this later). 
Equivalently, the second cohomology group is 

HA(G,V) = HomF,(R,V), (20) 

where V is viewed as a trivial G-module.7 

We shall now indicate the isomorphism between H&(G, V) and 
HA(G, V): Given an exact sequence 

l+V-+X+G-+l, 

where V is an lFG-module under conjugation (not necessarily trivial),we can 
complete the following diagram commutatively, F being a free group: 

9’ 

idJ (21) 
l+ V + X -+ G + 1. 

Since V is an lFG-module, u’ factorizes via R, and thus we obtain an 
induced FG-homomorphism u : R -+ V. 

‘This isomorphism is again obtained from a dimension shift, using the fact that R has 
no projective summands and V is trivial. 
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We now return to the situation above: We are given the homomorphism 
Q : G + U/V, and we want to interpret the associated 2socycle ZJ = A( Q> 
(cf. Lemma 5) with values in V as a homomorphism from R to V. For this we 
form the pullback along e: 

l+V+X-+G+l 
idl @J eL (22) 

l-, v + u+ u/v + 1. 

We thus have constructed an exact sequence, giving rise to a factor set in 
Equation (18), and we claim that this factor set is, modulo principal factor 
sets, exactly the 2-cocycle associated to e. Let the factor set as above be 
defined by 3cg*xh =f(g, h).xgh. Then 8( xg) lies in the fiber of e( g 1. Thus 
applying 0 and noting that 0 is the identity on V, we have, identifying c(g) 
with o(g) in the notation introduced in Lemma 3, 

Thus the associated cocycle to e is exactly represented by the factor set of 
the exact sequence of the above pullback modulo 2-coboundaries. 

Using the above commutative diagrams (21) and (221, we can now 
construct the homomorphism (T : R 1: lR2 -+ V, giving a 2-cocycle in the 
sense of Equation (20). This will be A( e> in Definition 4. 

Let us recall that we want to have a technique suited for the computer to 
check whether (pi> lies in Irn(aez) (Lemma 6 and Lemma 71. We shall write 
e for one of the ej and d for the corresponding de,. 

Now recall that 

d’ : H,‘(G, 1 + Z[(n+1)‘2]/Zn-1) + @(G, 1 + In-‘/Z”) 

is the connecting homomorphisms in the exact sequence (1). Note that 
H’(G, 1 + In-l/In) is independent of e, since In-i/Z” is a trivial module. 
hence H ‘(G, 1 + I”- l/Z”) can be computed according to the description in 
Equation (20). 

Let [ pi], , [ p,] be an [F-basis of H,‘(G, Z[(n+1)‘21/Zn-1), where the pi 
are given as genuine cocycles, and recall that we have stored the elements 

&(gj), where gj is a minimal system of generators for G. We now interpret 
the l-cocycles pi as homomorphisms 

pi : Z(G) j Z[(“+‘)/21/Zn-1 
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via 

gj - ’ + Pi(gj>. 

377 

Indeed, there is a natural isomorphism from I-cocycles: 

Zd(G, Zt(n+1)/2]/ZnP1) -+ Hom,,(Z(G), Z[(“f1)/21/ZnP1), 

where Z(G) is to be considered as left G-module. In fact, let ZJ be a 
I-cocycle, then 

xi!? - 1) = P(g) 

is a homomorphism: 

j-Q.(h - 1)) = jqgh - 1) - (g - 1)) = ti(gh - 1) - QTi - 1) 

= /L( gh) - p(g) = /.L( g) + e(g)P( h) - P( g> = ecgw). 

The same argument shows that any homomorphism gives rise to a 
1-cocycle. Moreover, the I-coboundaries give homomorphisms that factor via 
ff G and conversely. Hence we have a natural isomorphism with the notation 
introduced in Theorem 1: 

He’@, Z [(rI+1)/2l/Zn- 1) + HomFG( Z(G), Z[(rL+‘)/2]/ZrL-‘) X 

proj( Z/Z”-‘), 

where the right hand side are homomorphism modulo projectives. Note that 
Z(G) is the augmentation ideal of FG, and that if FG = FH, then Z(G) = 
Z(H) = 1. By the above formula (20), we have a natural isomorphism 

H"(G, 1 + ZnP1/Zn) = HomFG(02, ZnP1/Z”), 

and we shall interpret Irn(a’) as a subgroup of Hom,,(R2, Zrr-i/Zn). By the 
above Lemma 8 we can extend the action of G via Q to an action on 
Zt(“+‘)/2]/Zn, also denoted by e. We then construct the following commuta- 
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tive diagram with exact rows: 

We do this by choosing coset representatives yi of a( gi - 1) = p&g,) in 

Zt(n+l)/zl/Zn. Note that in practice the basis of Zt(n+1)/21/Zn is given as an 
extension of the basis of Zt(n+‘)/2]/Zn-1, and so it is easy to find the coset 
representatives. Then bj are defined by e, + yi, and S( ~3,) is just the 
restriction to R2. Then Im( d ‘> is the F-space spanned by d ‘( ~3~) inside 
HomF,(02, I” -r/Zn). Note that in general the a’( pj> will not be linearly 
independent. However, we now have a concrete realization of Im(a’>. 

Now we want to compute A( Q) as a homomorphism from 1R” to 
I”- ‘/In, where we are given a homomorphism e : G -+ FHX/(l + I”- ‘). 
We first describe the algorithm and then justify it. 

LEMMA 9. As above, {gill G id v is a minimal set of generators of G. This 

gives rise to the projective cover sequence (16). 

(1) A set of generators { oj, 1 < j < vO) of CI” can easily be computed as 

inverse images of a basis of f12/Z(G)lR2. (Alt ernatively one could use the Fox 

derivative.) These elements wj are represented in side 

huve unique representations 

@,“= 1 [FGe,, and so we 

Y 
wj = c xij. eixij E FG. 

i=l 

(2) Zf 6 : G -+ LFH x/I” is a lifting of Q as a map of sets, then we can 
form abstractly the 2-cocycle ZJ as G(g) ’ o(h) = p(g, h) ’ &?(gh), which has 
values in I ‘I- ’ /I”; note that Z.L depends on Q. 

(3) We can extend ZL to an [F-linear map and compute Z.L(X{~, gi) for all 
i,j. 

(4) A( Q>, interpreted as [FG-linear map from R2 to 1 + I”-‘/1 + I”, is 
then given by 

A(Q):w~+ ~p(xij.gi),l<j<v,. 
i=l 
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We postpone the proof until later. 
Now we have to test, whether the map A(Q) lies in the [F-span of 

{ a’( p,)}. Note that the elements { a’( /3,>} are in general not linearly inde- 
pendent. In computing the image of d’, we have at the same time computed 
the kernel Ker(d’). Assume that A( Q) E Im(J’>, and choose any representa- 
tion A( Q) = CJ: ,hd’( ~3,) - note that the f, E [F are not unique. Then for 

. this particular e the possible homomorphisms G + FHX/(l + I”- ‘) that 
can be lifted are precisely the maps {Ker(J’> . (1 + Cf; @j)P’ * Q); note that 
this is an affine space! 

The problem remains, to find all the liftings explicitly. We first have to 
find one lifting - note that we have not computed the 2-coboundaries from G 
to 1 + In-l/Z” yet; we have only given an abstract description of 
H’(G, I”- l/Z”). H owever, this task is easier than one would expect, since 
we have: 

LEMMA 10. Assume that p. Q : G -+ FHX/(l + I”- ‘) can he li$ted. 

Choose any coset representative Q(gi> for /3 * e(gi) in FHX/(l + I”>, where 

{ gi} is a minimal set of generators J;lr G. Then o(gi) can be extended - in the 

obvious way - to a unique homomorphism 0 : G + FHX/(l + Z”). 

Proof. We know that there exists a homomorphism Q’ : G + FHX/ 

(1 + I”), which reduces to p. e. Now ,@gi>. ~‘(g,>~l = 1 + +l(g,), where 
$(g,> E Znpl/Z”. However, 

Hom(G, ZnP’/Z”) = Hom(G/G’, I”-i/Z”) = Hom([F @$ G/G’, Zn-‘/Zn) 

is a space of homomorphisms of If-vector spaces - note that I”- l/Z” is a 
trivial G-module - and so every homomorphism is uniquely determined by 
the image on a basis. The cosets of (g,} form such a basis. Thus there exists a 
unique homomorphism +!J : G + I”- r/Z”, extending I,!J(~~). But 

Hom(G, Znp’,/Z”) E H’(G, In-‘/Z”) ‘I H1(G, 1 f In-‘/Z”), 

i.e., I,!J gives rise to a I-cocycle 1 + I+!J, and thus by Lemma 5 (1 + I/J> * Q’ is a 
homomorphism. However, (1 + $1. Q ’ is uniquely determined by its values 
on { gi}, and (I + $> . Q’( gi) = $(g,), whence { $(g,>} extends to a unique 
homomorphism $ : G + IFH ‘/(l + I”) as claimed. n 

We can now summarize how to find all homomorphisms G + FHX/ 

(1 + I”): According to the above, we have found a test to decide which P . pi 
do extend. For each i, if there is an extension, choose one Pi such that pi * pi 
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extends. Let ei be the extended homomorphism, according to Lemma 3, 
stored as {@,(gj)}. By L emma 5 all other homomorphisms are then given by 
Z$(G, 1 + Zm/Zn) * &. 

We now turn to the proof of Lemma 9. We only have to verify the last 
statement. For this we have to analyze carefully the isomorphism 
ZZ&(G, I”- ‘/Zn) = Hom,,(fi”, In-l/In) [cf. the exact sequences (20) 
(21) (22)]. We have the exact sequence 

1 + 1 + In-‘/z” + FP/(l + Z”) - FZP/(l + 1-l) --) 1, (23) 

and our given homomorphism Q : G + FHX/(l + I”- ‘) allows us to con- 
struct the pullback diagram with exact rows 

1 +1 + ‘i:dl/I ” +FHx/(l + I,) Te, +FHX/(l + I”-‘) + 1 

T@ 
1 + 1 + In-‘/in + X -+ G -+ 1. 

It was shown, in the construction (22) ff., that the 2-cocycle Z.L associated to Q 
is (modulo 2-coboundaries) exactly the factor set corresponding to the 
sequence (23). We also have the free resolution defined in (191, 

where $’ : F + G sends the free generators of F, say, f, to the generators gi 
of G. Since F is a free group, we obtain a commutative diagram with exact 
rows: 

Since 1 + Z”p’/Z” is an F - module, the map U’ factors via Z?, the relation 
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module. Thus we get the commutative diagram with exact rows, where 
F = F/ker(R + E>: 

1 + R + F < G + 1, 

La J7 Lid 

1 + 1 + In-‘/Zn + X - G - 1. 

LEMMA 11. Zf we identz$y R with R” (cf. the discussion following the 

exact sequence (19)), th en u gets identified with A( Q). 

Proof. As in the exact sequence (161, X~ E X are coset representatives 
of g E G. Then r is defined by sending the cosets of fi to xi. The natural 
isomorphism 

ZZ;,(G, -) cz Ext&( Z(G), -) [CR], 

where the second variable is an FG-module, transforms the diagram (21) to 
the commutative diagram with exact rows: 

Recall from (16) that C#J sends e, to gi - 1. The exact sequence (16) then 
shows that we may identify E in a canonical way with s2’. In the above 
diagram M, is the extension corresponding to the factor set /L Thus as an 
F-vector space we can identify 

Mx with 1 + In-‘/Z” CD Z(G), 

where 1 + ZnP’/Z” is the old FG-module, and the G-action on M, is as 
follows: 

h-&g - 1) = (/-QJQh-(g - 1)) with our old 2-cocycle Z-L. 

The map ri is induced from rr : e, + (1, gi - 1). Then CT is the restriction 
of rr to 0’. Thus we have to compute ri on the generating set 

v 

wj = C xij-e,, 
i=l 

(24) 
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where 

xij = c fjjsg E FG. (25) 
CTEG 

However, 

i=l geG i=l LEG 

Since the image of wj lies in 1 + I”- ‘/In, we conclude 

a(wj> = i P('ij, gi>> 

i=l 

if we extend p linearly. But this is exactly the formula of Lemma 8, and thus 
proves Lemma 10. n 

It should be noted that (24) and (25) have to be computed only once, 
independently of n and Q. For each n and Q one does have to compute 
p(g,gi), but only for those g E G where fija is different from zero. 

This completes the description of our algorithm, which gives, up to 
conjugation, all homomorphisms from G to IFHX. We conclude by noting that 
the reader interested only in isomorphisms from [FG to FH can use Remark 2 
above. Also, the algorithm allows one to start with any given homomorphism 
G + (FH/Z")X and determine all possible liftings G + [FH ‘. 
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