
Are All Groups Finite? 

Leonard L. Scott* 

This paper is dedicated to Walter Feit on the occasion of his 65th birthday. 
Its contents were presented in part at the 1995 Ohio State finite group repre- 
sentation conference organized in celebration of that birthday. Primarily, the 
paper is a discussion of some classical and recent developments in the modular 
representation theory of finite groups of Lie type, and the problems which drive 
that theory. But there is also a philosophical thread . . . 

An old question which arose again at the conference is the following: Are 
all groups finite? That is, applications and broader issues aside, if we think only 
of our interest in finite group theory itself, is it possible to safely ignore other 
groups? My viewpoint is that the answer to this question has two parts: First, in 
representation theory, at least, we cannot ignore the infinite complex Lie groups 
and their characteristic p analogs, the algebraic groups over @,. The second 
part of my answer is that we can, nevertheless, hope to find understandings 
within finite group theory and finite dimensional algebra of ideas naturally 
suggested by these continuous contexts, and take them further. 

Let me begin by convincing you of the first part of my answer: Suppose 
one is considering a finite group G(F,) of Lie type, such as the special linear 
group SL(n, 4) of degree n with coefficients in the field F, of 4 elements, 
q a power of a prime p. The Classification of finite simple groups asserts that 
almost all of the latter are variations on the finite groups of Lie type together 
with the alternating groups. Much earlier (1963), Steinberg [341,[351 proved 
all irreducible representations of G(lF,) with coefficients in a finite field of 

characteristic p, and, thus, in the algebraic closure F,, come by restriction 

from the irreducible representations over @, of the algebraic group G(@,). 
The latter group is, of course, quite infinite. It is the analog via the Zariski 
topology, of the complex analytic Lie group G(C). Moreover, the representa- 
tions we need are continuous, and even “analytic”, in the sense that they are 
locally defined by polynomial functions. Now, the theory of finite-dimensional 
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irreducible continuous representations of G(C) has an elegant and powerful 

formulation, first, in that the irreducible representations are parametrized very 
completely by the “theory of the highest weight” of Cartan, and, second, that 
the characters of these representations are known, given by the famous “Weyl 
character formula”. See, for instance, [201 for these theories for complex 
semisimple Lie algebras. 

If we had such a parameterization and such a character formula for the finite 
groups G(F,), not only would we would know their irreducible characters in 
the describing characteristic p of G(F,), but we might learn something about 
the nondescribing case as well, where many analogies with the describing case 
have been discovered by Dipper and James [El, 1161, 1141, [211. Working 
with the general linear group GL(n, q) they have found families of finite- 
dimensional algebras, the q-Schur algebras, parameterized by a variable q, 
that control the nondescribing characteristic representation theory of the group 
GL(n, q) when q is taken to be a prime power (which may also be viewed as 
a kind of root of unity when the underlying field has positive characteristic), 
and which control the modular theory in the describing characteristic p when 
q = 1. If we knew both describing and nondescribing modular theory for 
the simple or nearly simple groups of Lie type, we could also hope to learn 
much about the maximal subgroup structure of all other finite groups [30], 
121. Indeed, this is a main organizational theme of the upcoming 1997 Newton 
Institute program at Cambridge. 

So, to summarize, it would be highly desirable to have for finite groups 
G(F,) of Lie type a parameterization and character formula, as exist for the 
complex Lie groups G(C). Also, thanks to the work of Steinberg mentioned 
above, both issues for G(F,) reduce to the corresponding problem for the 
algebraic group G@,). Now it is time to tell you that the parameterization 

problem for G@,) was solved even before Steinberg’s work by Chevalley, 
imitating the Lie-theoretic case G(C) mentioned above. 

Before discussing the character formula issue, let’s consider how far we 
have come in discussing my reply to the philosophical issue, “Are all groups 
finite?’ The first suggestion in my reply is that we cannot ignore G(C) 
and G(i$‘,), and I hope the initial history above of the parameterization for 
describing characteristic representations of G(IF,), through Steinberg and 
Chevalley, duplicating Cartan’s “theory of the highest weight”, is convincing 
evidence of the usefulness of looking at continuous and algebraic groups. 
The problems are easier for these more richly structured groups, and some 
have been solved. The second suggestion in my reply, that we can abstract 
from these continuous contexts, and perhaps go beyond them, is evidenced 
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by what has happened to the parameterization theory since that time: First, 
Curtis and Richen 1121, 1131, 1291 showed it was possible to carry out an 
analog of the parameterization process, suitably modified, in any finite group 
with an appropriate split BN pair. Second, Alperin [l] demonstrated with his 
celebrated conjecture (a main theme of our conference) that it was possible to 
formulate a version of the parameterization which makes sense for any finite 
group ! 

Perhaps those involved in the Classification might also say that it was 
useful to know that corresponding simple group classifications already existed 
for G(@) and G@,), and the uniform theory of groups of Lie type which 
emerged was (and is) useful in efficiently dealing with many properties of 
known groups, and in formulating many general concepts. The structure in the 
Lie-theoretic case was not at all ignored, but, as above, it was only a starting 
point (together with involutions and the Odd Order Paper!) for a more general 
(and more elaborate) theory. 

Let’s now go to the issue of a character formula for the describing characrer- 
istic representations of G(F,). We are, I believe, far from a result as complete 
as the Classification, for irreducible modular representations of G(lF,). The 
few results we have put us at the beginning of the cycle, where it is still essential 
to learn from G(C) and G@,). Nevertheless, it has been part of the point of 
view of myself and my colleagues, especially in CPS (Ed Cline, Brian Parshall, 
and myself), to develop a theory as purely algebraic as possible, to both try 
and attain a more general theory and to allow for elaborations diverging from 
the cleanest cases. This point of view is also important in our approach to 
proving the current main conjecture, due to Lusztig. Before describing it, let 
me describe one of CPS’s main algebraic abstractions, which will at least make 
the Lusztig conjecture easier to explain. The discussion is largely borrowed 
from my exposition 1321. 

1.1 Highest weight categories, and examples. Fix a field k, and let (5’ be 
an abelian k-category (that is, e is abelian, all Horn sets are k-modules, and 
multiplications of morphisms is k-linear). In all cases we will consider here, 
e will simply be equivalent to the category of finite dimensional modules 
over a finite dimensional algebra, but it may not start out looking like that. 
We suppose the nonisomorphic irreducible objects L(h) to be indexed by the 
elements h of a poset A, called weights. For simplicity we will assume A 
is finite here; for a more general notion (requiring only that the intewals of A 
be finite), the reader is referred to [7]. We will also assume for simplicity that 
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all objects of e have finite length, that Horn sets between objects are finite- 
dimensional over k, and, moreover, that Endc Z,(h) 2 k for each h E A. 
We assume that 6’ has enough projectives, and let P(h) denote the projective 
cover of L(h). We say that (5’ is a highest weight category if there are objects 
V(h), h E A, such that 

(1) V(h) has head L(h), and all other composition factors of V(h) have 
smaller weight than A. 

(2) There is an epimorphism P(h) + V(h) with kernel filtered by objects 
V(p) with p greater than A. 

These conditions imply that V(h) is the largest epimorphic image of P(h) 
with h maximal among the weights of its composition factors. Such objects 
arise naturally in Lie-theoretic contexts. We call V(A) a WqZ object, since it 
is a Weyl module in our favorite context of characteristic p algebraic group 
representations. Other good names are &ma object, or simply standard 
object. Typically, these objects are well understood, and the main object of 
research is to write the irreducible objects in terms of them in the Grothendieck 
group (that is, to obtain their “Weyl character formula”). This is precisely what 
the Lusztig conjecture purports to do, with certain restrictions. 

Three examples in Lie theory. 

(1) The example which first motivated CPS is the following: Let G = G(k) be 
a semisimple, simply connected algebraic group over an algebraically closed 
field k of positive characteristic p (e.g. k = pq). This is the most relevant 
example for finite group theory. In discussing it, I will assume some basic 
terminology from algebraic group theory, but the reader familiar with the basic 
theory of root systems and Lie algebras as found in [201 should be able to 
follow much of it. Just keep in mind the basic example G = SL(n, py). 

There, T below is the group of invertible diagonal matrices over ll?, , B is the 
group of upper triangular matrices and W is the group of n x n permutation 
matrices. The Lie algebra of G as a vector space is n x n matrices of 
trace 0, and its root spaces are just the 1- dimensional spaces with arbitrary 
entries in the i, j position, for fixed i # j, and O’s elsewhere. These are 
common eigenspaces for the action of T by conjugation, and the associated 
homomorphism (character) mapping T to @,X is called a root in the world 
of algebraic groups, while an arbitrary algebraic group homomorphism from 
T to IF, is called a weight. Let T be a fixed maximal torus, and denote 
the root system of T acting on the Lie algebra of G by a. We choose a 



Are All Groups Finite? 137 

set @+ of positive roots, and let B denote the corresponding Bore1 subgroup 
corresponding to the associated set @- of negative roots. The set X(T) 
of characters (weights) on T is partially ordered by the rule: h 5 p + 
p - h = CUE@+ naa for non-negative integers na. We also have an induced 
poset structure on the set X(T)+ of dominant weights (relative to Q+ ). Fix 
any finite set Aa of dominant weights, let A be the (finite) set of dominant 
weights h for which h 5 ho for some ho E Au. Then the category 6’ of 
finite-dimensional G- modules (in the sense of algebraic groups) which have 
composition factors each with maximal T- weight in A is a highest weight 
category with weight poset A. The Weyl modules V(h) are obtained as linear 
duals of modules induced to G, in the sense of algebraic groups, from dominant 
weights in X(T)+ extended to B. (These induced modules are all finite- 
dimensional!) They may also be obtained by a reduction modulo p process 
from an irreducible module in characteristic 0. As such, their decomposition 
into weights for T is directly obtainable from the Weyl character formula. 

Projecting e onto any block of G-modules also gives a highest weight 
category. If p 2 h, the Coxeter number of the root system, it is well-known 
[22] that the character formulas for all irreducible modules are deducible from 
those in the principal block. The weights for the latter are the dominant weights 
in the orbit W,. 0 of 0 under the ‘dot’ action of the affine Weyl group W, 

(defined by w. p = w(p + p) - p, where p is the sum of all the fundamental 
dominant weights, for w E WP and p E X(T). ) Also, Steinberg’s tensor 
product theorem allows us to restrict attention to restricted weights, those with 
coefficients less than p when expressed in terms of certain ‘fundamental’ 
weights. Let us redefine A as the set of dominant weights which are in the 
orbit W,.O and bounded above by a restricted weight in that orbit. Lusztig’s 
conjecture may then be written 

chL(w.0) = c (-l)~~w~-~~y~Pywo,~~c,(l) ch V(y.O), 
y.OEA 

for any weight w.0 in A. Here y, w are in W, and wu denotes the long 
word in the ordinary Weyl group W. The terms Py,,,,,,(l), are values at 1 
of Kuzhdun-Lusztig polynomials, which are defined in a purely combinatorial 
way for any pair of elements in a Coxeter group. Finally e(w) denotes 
the length of w in the sense of Coxeter groups (the number of fundamental 
reflections in a minimal expression), and the function ch(-) just assigns 
an object of e to the associated element in the Grothendieck group of e. 
The conjectured formula would give character formulas for all irreducible 
G-modules, so long as p > 2h -3, and these would in turn give corresponding 



138 Leonard L. Scott 

character formulas for any finite group G(lF,) of Lie type associated to G, 

with q a power of p. (Actually, so long as p > h, the above formula could 
hold for all restricted weights, and as such would have the same implications 
for finite groups, for such a p. This stronger version of Lusztig’s conjecture 
was formulated by Kato [23], who apparently originally believed it to be a 
consequence of the original conjecture, but the arithmetic doesn’t work out 
that way. Let me take this opportunity to mention that the first open cases for 
the Lusztig conjecture occur for SL(5,5) and SL(5,7), which I have been 
examining with the help of an NSF undergraduate REU student. The former 
case is the first possibility for the Kato and Lusztig versions to diverge.) 

Lusztig obtained his conjecture by analogy with his conjecture with Kazh- 
dan [241 for complex Lie algebras, which we describe next. 

(2) Let JJ be a complex semisimple Lie algebra, and fix a Cartan subalgebra 
tj and Bore1 subalgebra b containing h . Consider the corresponding category 
0 of BGG. The objects are the g-modules which are tj-diagonalizable with 
finite-dimensional weight spaces (where a ‘weight’ here is a l-dimensional 
representation for the Lie algebra h ), and with the set of nonzero weights 
bounded above by some finite set of weights. We will also restrict attention 
to the case where all weights are integral; equivalently, they belong (by iden- 
tification) to the set X(T) of characters for a torus T associated to lj; these 
are just the integral linear combinations of the ‘fundamental’ weights for h. It 
is again true that any block of such modules forms a highest weight category, 
and all character formulas for irreducible modules are obtainable from the 
principal block case. The standard objects this time are the Verma modules 
M,I,, h E X(T), obtained by tensor induction of h at the universal enveloping 
algebra level from b to g. We write V(h) = MA, and let L(h) denote the 
irreducible head of V(A). The weights A indexing irreducible modules in 
the principal block are just those in the orbit A = W. -2~. (This is also 
the orbit of 0 under the ‘dot’ action, since 0 = wu. -2~. ) They correspond 
bijectively to elements of the Weyl group. The Kazhdan-Lusztig conjecture 
(now a theorem due to Brylinski-Kashiwara [61 and Beilinson-Bernstein [Sl) 
reads 

chL(w. - 2~) = x(-l) @‘)-e(y)Py ,(I) ch V(y. - 2p), , 

YEW 

where again P y,w (1) is the value at 1 of a Kazhdan-Lusztig polynomial. 
The similarity of this formula and the previous one is remarkable, and all 

the more so when one considers that the standard modules in the first case are 
finite-dimensional, but infinite-dimensional here. The next case, is even more 
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remarkable, in that we obtain precisely the same character formula for standard 
objects which are not modules at all, but complexes of sheaves. 

(3) A key ingredient in the proof of the Kazhdan-Lusztig conjecture was 
the Kazhdan-Lusztig formula for the stalk dimensions of the cohomology of 
perverse sheaves. It can be written as a character formula in the Grothendieck 
group sense we are using here, and we describe it below. 

Let X = G/B denote the flag variety obtained from the simply connected 
semisimple complex Lie group G associated to the Lie algebra JJ above, and 
consider the category e of perverse sheaves on X with respect to the Schubert 
stratification and the middle perversity 141. (Thus a stratum is a Schubert cell 
S(w) = Bw B/B, w E W, and a perverse sheaf is a complex of sheaves of 
complex vector spaces with cohomology locally constant (thus constant) and 
finite-dimensional on Schubert cells, with certain support conditions satisfied.) 
The poset is W, with its Bruhat-Chevalley order, and the Weyl objects V(w), 

w E W, are quite easy to describe: V(w) = is(,,,)!C[e(w)], the extension by 
0 of the constant sheaf, shifted downward as a complex in the derived category 
by degree f?(w) Every Weyl object V(w) has a unique irreducible quotient 
L(w), and the axioms for a highest weight category are satisfied [28, $51. 
Though unnecessary in our discussion, it is a remarkable fact that L(w) is 
the downward shift by f(w) of the complex (extended by zero to X ) defining 
Goreski-MacPherson intersection cohomology on the closure of S(w) ; see 
[251 and [331. 

The Grothendieck group formula of Kazhdan-Lusztig 1251 reads 

chL(w. -2p) = x(-l) e(w)-c(y)Py ,(I) ch V(y. - 2p), , 

YEW 

which is identical to the form of the Verma module Kazhdan-Lusztig conjecture 
above. Essentially, the latter conjecture was proved through an equivalence of 
categories reducing it to the above formula. 

1.2 Quasihereditary algebras. Every highest weight category with finite 
weight poset and all objects of finite length is the category of finite-dimensional 
modules for a quasihereditary algebra S. Indeed, CPS introduced quasihered- 
itary algebras for this reason, and proved that, conversely, the category of 
modules for a quasihereditary algebra could be viewed as a highest weight 
category [311, C281, [71. We will not reproduce the axioms for a quasiheredi- 
tary algebra here, but note that examples include hereditary algebras and poset 
algebras [28], as well as all finite-dimensional algebras of global dimension 
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two [ 171. All quotient algebras of hereditary algebras are quasihereditary. Fur- 
ther Lie-theoretic examples of quasihereditary algebras include Schur algebras 
and 4 -Schur algebras, and their generalizations 171, [ 181. CPS believes that 
understanding these algebras (and variations, with various degrees of added 
structure) will provide a good basis for understanding representations of alge- 
braic groups in characteristic p, and finite groups of Lie type in describing 
or nondescribing characteristic. A new generalization of the quasihereditary 
notion, very relevant to the nondescribing characteristic case, is described in 
the last section of this paper. 

Every quasihereditary algebra S has finite global dimension. The opposite 
algebra S “P is quasihereditary with the same weight poset, and the S-module 
A(h) dual to the Weyl module V”P(;l) for S ‘P has the following remarkable 
property [7; p. 98, bottom] 

ExWW), A(h)) = (:, ~;e-!-!; 

Here we have assumed, as before, that End L(h) = k to simplify the state- 
ment. Using this property, and an Euler characteristic argument of Delorme, it 
is possible to understand why the character formulas in each of the above three 
cases have such a remarkably similar appearance. Moreover, by tracking in 
the abstract setting a version (due to MacPherson, see [33l) of the arguments 
used to prove the Kazhdan-Lusztig formula in the perverse sheaf case, CPS 
was able to provide [Sl (see also [9] and [lo]) the following reductions. The 
‘length’ e(h) of a weight h = w.0 below is the number of simple reflections 
in a reduced expression for w. 

Theorem (The CPS reductions). In each of the three examples above, the 
Lusztig conjecture or its analog (the Kazhdan-Lusztig conjecture, or Kazhdan- 
Lusztig formula) is equivalent to each of the following statements: 

(I) For each h, ,Y E A, Ext’(V(p), L(h)) # 0 + e(k) - l?(p) = 1 (mod 

2). 

(2) For each h E A, and each weight h’ adjacent to h (in the sense that 
the affine Weyl group or Weyl group element associated to h’ is obtained 
from that associated to h by right multiplication by a simple reflection), 
we have Ext’(L(h’), L(h)) # 0. (By a duality principle, one may take 
here h’ < h. or h’ > h). 

(3) For each h, Al. E A, the natural map 

Ed (L(p), L(h)) + Ext’ (VW LG.)) 

is surjective. 
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The most promising of these reductions is perhaps the second one, though 
each has its own advantages. When the Lusztig conjecture is true, versions of 
1) and 3) hold with the number 1 replaced by IZ throughout (two replacements 
in 1) ), and dual versions hold using A(p), cf. [Sl; see also [91. One may 
study such conditions purely from the point of view of finite dimensional 
quasihereditary algebras, though they are far from giving us a description up to 
isomorphism (or a suitable weaker invariant) of the algebras involved. Until we 
get that far, we are somewhat in the position of trying to prove deep properties 
of finite simple groups without knowing what all the simple groups are. 

1.3 The Lusztig program. Recently, George Lusztig [27] has formulated 
an attack on his own conjecture organized around the theory of quantum 
groups. Work by himself and Kazhdan relates a Lusztig-type conjecture for 
quantum groups at a root of unity to its validity in a category of ‘negative level’ 
representations for affine Kac-Moody Lie algebras. The latter conjecture, 
at least for simply laced root systems, is settled by work of Kashiwara and 
Tanisaki (also claimed by Casian, who acknowledges his original proof was 
in error) by reduction to a category of perverse sheaves on a generalized flag 
variety. Ignoring the non simply-laced case difficulties1 , to complete the chain, 
one requires a reduction from quantum groups at a pth root of unity to algebraic 
groups in characteristic p. This has been provided for all types by Anderson, 
Jantzen and Soergel 131 for p sufficiently large, depending on the individual 
root system and its rank. 

Unfortunately, no specific bound whatsoever is known for p as of this 
writing. The problem is that p must stay away from divisors of the index in 
a maximal order of a certain algebra over Z, and the algebra is constructed 
so indirectly that very little information on the index is available. As Jantzen 
himself reported at the 1994 Banff conference, this situation is simply not 
acceptable to finite group theory. While CPS thinks highly of the AJS work, 
we regard the Lusztig conjecture as open and continue to work on it. 

1.4 Stratified algebras. Another aspect of the situation is that CPS wants a 
theory sufficiently general to be appropriate for nondescribing characteristic, 
in the spirit of the Dipper-James work on the q-Schur algebra. Already there 
has been work by Dipper and others (see [191) dealing with groups other than 

1 These difficulties have apparently now been handled by Kashiwara-Tanisaki. 
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the general linear group. While it may be that quasihereditary algebras are 
involved in these cases, at least in favorable characteristics, CPS conjectures 
a role for a slightly more general kind of algebra. This new generalization is 
called a stratified algebra [ill. I describe first the most basic types of stratified 
algebras, the algebras with a standard stratification, which are quite close 
to quasihereditary algebras, and one weaker notion, algebras (whose module 
category is) equipped with a stratifying system. 

The description is quite easy to do in both cases if we just think about how 
we are to relax the corresponding notion (1 .l) of a highest weight category: 
First, we relax the condition that the weights A form a poset, requiring only 
that they form a quasiposet, so that two weights h and p may satisfy h 5 ,LL 
and p 5 h without being equal. The equivalence classes thus obtained do 
themselves naturally form a poset A, and we let h. denote the element of i 
associated with h E A. Next, in condition 1) for a highest weight category, 
we require only that all composition factors L(p) of the standard object V(h) 

satisfy h 5 h. (So that L(h) may appear twice or more, along with other 
composition factors L(p) with h. = ,G.) The second condition 2) is kept in the 
“standard’ case, and that completes the definition for that case. 

In the “stratifying system” case the inequality in 2) is relaxed to allow 
equality, but other relaxations are made as well: We just assume we have a 
system of objects V(A) and given projective objects P(h) mapping onto each 
of these with kernel filtered by V(p)‘s with p 1 h. We do not require that 
V(k) have an irreducible head, or that the quasiposet index the irreducible 
modules. As a replacement for the latter, we do insist that every irreducible 
module appear in the head of some V(h). Condition 1) is replaced by the 
requirement that there are no nonzero homomorphisms from P(h) to V(p) 

unless p 5 h. 
In either case, one can prove from these conditions that the underlying 

algebra A has a sequence of idempotent ideals 0 = Jo c J1 c . . . c Jn, 

with IZ = II\ 1, such than Extm A,Ji (M, N) = Extz(M, N) for all left (or right!) 
A/J-modules M, N, all integers n 3 0, and each index i. With mention 
of A omitted, this is the general CPS notion of a stratified algebra, with a 
stratification of length n. In the “standard” case, each Ji/ Ji-1 is left projective 
as an A/ Ji -1 -module, and this is characteristic of standardly stratified algebras. 
The ideal need not be right projective, however. Unlike the quasihereditary 
case, there are algebras which are standardly left stratified but not standardly 
right stratified (even though the “general” notion of a stratified algebra is left- 
right symmetric). Apart from that, and the relaxed ordering inside standard 
modules, the theory of standardly stratified algebras is very close to that of 
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quasihereditary algebras and highest weight categories. Note that the standard 
module V(h) is uniquely determined, in the “standard” case, as the largest 
quotient of P(h) with all composition factors L(p) satisfying p 5 h. The 
notion of an algebra whose (left) module category has a stratifying system, and 
the general notion of a stratified algebra, are both weaker, but more flexible. 
For instance, an algebra which has a stratification of length n > 1 in the 
“general” sense also has one of length it - 1, obtained by removing any of the 
intermediate ideals in the above chain. (There is an analog of this statement for 
algebras with a stratifying system.) Also, as mentioned, the “general” notion 
is left-right symmetric, though this is not obvious. 

CPS has taken considerable trouble [ 111 to be able to recognize when an 
endomorphism algebra (e.g. a Schur algebra, q-Schur algebra, or future gen- 
eralization) has a natural structure as a stratified algebra. This includes, of 
course, the quasihereditary case (easy to check in the presence of a standard 
stratification), but the generalizations are also interesting, and may be impor- 
tant. The recognition conditions are quite complicated, though simplify very 
considerably2 in special cases. They involve a kind of generalized “Specht 
module” theory. Rather than reproduce the conditions here, I will simply give 
some examples from [ill, referring the reader to that paper for additional 
details, and further examples: 

Throughout k is an algebraically closed field. 

(1) A strutijication of length 2. Let G be any nontrivial finite group. Consider 
the direct sum T of the trivial module and the regular permutation module 
over k. Then A = Endkc(T) is stratified, with ]A] = 2 (the length 
of the stratification). Interesting cases occur already for G the cyclic 
group of order 2 or the Klein four group. In the first case, A is the well- 
known algebra of dimension 5 which has two simple modules a and b, 

a 
with projective covers b and 

b 
a. In the second case, A is already not 

quasihereditary! Its projzctive covers have Loewy layers as indicated by 
a 

the diagrams a a b and 
b 
a’ 

a 

2 The simplifications in the preprint “Stratifying endomorphism algebras over Hecke 
algebras”, by Du, Parshall, and Scott, over Z[q, q-l], might even be described as 
dramatic. 
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Thus, unlike the quasihereditary case, the standard object associated to a 
(the quotient of the first projective cover by the submodule isomorphic to the 
second) has a appearing with a nontrivial multiplicity. Nevertheless, inside A, 
the ideal generated by the idempotent associated to the second projective cover 
is quite nice. It is both idempotent and (left) projective. This example and the 
next are both standardly stratified. All standardly stratified algebras have such 
ideals, and their factor algebras are also standardly stratified. 

(2) A strati$cation of length 3: the dihedral group of order 8. Let G be 
the dihedral group of order 8, and let T be the direct sum of the trivial 
module, the regular module, and the two transitive permutation modules 
of degree 4 associated to coset spaces of the two conjugacy classes of 
noncentral subgroups of order 2. We take char k = 2. This time the 
algebra A = EndkG T is quite difficult to visualize from the given data. 
The general CPS approach is to try to impose a generalized ‘Specht 
module’ filtration on T, and deduce from its properties that A is indeed 
stratified. Without giving full details, I will at least describe the ‘Specht 
modules’ we use. Let a and b denote generators of order two for G, and 
put A = a - 1, B = b - 1. Thus A2 = 0 = B2 and ABAB = BABA. 
We will diagram cyclic modules by indicating where a nontrivial action 
of A or B occurs, starting from a generator. (No arrow associated to a 
given node and label indicates a zero multiplication. Note that, if a node 
was reached by multiplication by A, then that node must be killed by A. 
A parallel statement holds for B.) Thus, the four transitive permutation 
modules making up T have diagrams 

Here the single node l is also representative of the unique irreducible (triv- 
ial) module for the group G, and the above diagrams give refined Loewy series 
pictures. In the CPS set-up, each of these indecomposable components of T has 
a ‘Specht filtration’, which turns into the required filtration of projective covers 
by standard modules for the algebra A = EndkG(T) under the contravariant 
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functor Homkc(-, T). (This functor is not exact, but a filtration of T still in- 
duces a filtration of A.) Moreover, each component above has a distinguished 
‘Specht’ submodule, though it is possible for two such ‘Specht’ modules to be 
isomorphic. For the first and second components above, the Specht submodule 
is the 1 -dimensional trivial module, while for the third and fourth component, 
the Specht submodule is the unique 3-dimensional submodule. The reader 
will observe that, when the bottom and top trivial modules are eliminated from 
the second component, the remainder is the direct sum of the Specht modules 
associated to the third and fourth component. This puts all ‘Specht filtrations’ 
in evidence. The reader may consult 1111 for some general machinery to 
check that these filtrations are transformed into the required standard module 
filtrations for the indecomposable projective components of A (or can attempt 
a direct verification starting from the filtrations and functor we have given). 

CPS believes something general is happening here for all Coxeter groups, 
that a similar construction always leads to a nontrivial stratified algebra. We 
have conjectured the following: 

Conjecture. Let W be a finite Coxeter group with distinguished generating 
set S, (SI > 1. For J C S, let TJ denote the permutation module for kW 
on the cosets {WJW},,~. Put T = eJcs TJ and A = Endkw T. Then A is 

strati$ed with respect to a quasiposet A with [A/ 1 3. 

For a more detailed statement of the conjecture, see [HI. We believe the 
stratification arises from a stratifying system, and that A may be assumed 
to have a largest and smallest element, containing only one element each as 
equivalence classes in A, with these elements associated to Ts (the trivial 
module) and the sign module submodule of T4. The stronger form of the 
conjecture also has as a consequence the existence of certain known resolutions, 
one of which is the Coxeter complex. As the final version of this paper is being 
readied for press, it appears that Du, Parshall and Scott will soon prove the 
stronger conjecture, and a q-analog.3 

CPS also expects (with Jie Du) that an enlarged version of A will have 
a standard stratification related to the filtration of the TJ’S by dual left cell 
modules, in the sense of Kazhdan-Lusztig, of length equal to the number of 
two-sided cells. The algebra A itself exhibits such a stratification in the order 
8 dihedral case above. This is a special case of a Weyl group of type B. In 

3 This has now been done, in the preprint described in the previous footnote. 
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this case Jie Du and I are working on another natural enlargement that may be 
quasihereditary. 

As mentioned above, it also seems likely that a q-analog of the conjecture 
holds for Hecke algebras, a possibility which makes the conjecture and stratified 
algebras quite relevant to nondescribing characteristic theory. This already 
important area of research will become even more central once the problems 
posed by the Lusztig conjecture itself are solved. 
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