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Abstract .  This paper shows how the Kazhdan-Lusztig theory of cells can be 
directly applied to establish the quasi-heredity of q-Schur algebras. The applica- 
tion arises because of a very strong homological property enjoyed by certain cell 
filtrations for q-permutation modules. 

Introduct ion  

This note points out a direct connection between the quasi-heredity of 
q-Schur algebras and the Kazhdan-Lusztig theory [KL1] of cells for Coxeter 
groups. The connection is based on a remarkable homological property - 
discovered in [DPS] - enjoyed by cell filtrations of certain induced (or q- 
permutation) modules for Hecke algebras. 

More precisely, consider the generic Hecke algebra H over Z = Z[q, q-l] 

associated to the symmetric group W = ~r .  Let V be a free Z-module of 
rank n. The Hecke algebra H has a natural right action on tensor space 
~| and the corresponding q-Schur algebra can be defined as the endomor- 
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phism algebra End~(V| In practice, we work with the Morita equivalent 
algebra 

(1) Sq(n,r) = End~(  ( ~  ind~ IND,).  
AeA+(n,r) 

Here A + (n, r) is the set of partitions of r into at most n parts, H~ is the 
parabolic subalgebra corresponding to )~ E A+(n, r), and IND~ is the index 
character on _H;~. (See Section 2 for further explanation of notation.) The 
algebras Sq(n, r), which behave well with respect to base change, go back 
to the work of Dipper-James [DJ2]. They derive their importance, in part, 
from their close relationship with the non-describing representation theory 
of finite general linear groups GL(n, q); cf. [D]. 

There is a preorder ~_LR defined on W whose cells (equivalence classes 
for the relation x ~--LR Y & Y ~--LR X) are the two-sided Kazhdan-Lusztig 
cells of W. Denoting this set of two-sided cells by 2, ~ L R  defines a poset 
structure on this set. Let op ~--LR denote the opposite poset structure. 

M a i n  T h e o r e m .  The algebra A -- Sq(n,r) is Z-quasi-hereditary. In 
p articu~r, for any field k and ring homomorphism Z -+ k, the algebra 
Ak = A |  k is quasi-hereditary. There exists a subposet (E(n, r), <_~ 
o f  ~ op (~, <--L!a) which serves, for all k, as the weight poset for the associated 
highest weight category Ak-mod.  There exist A-modules ~(~), ~ E S(n , r ) ,  
such that, for any k as above, the Ak-modules ~(~)k obtained from ~(~) 
by base-change, are the standard objects for the highest weight category Ak 
mod. 

The notion of a Z-quasi-hereditary algebra first appeared in [CPS]. The 
proof that  -4k is quasi-hereditary was first given in [PW; (11:5.2)]). In [PW] 
it was assumed that  ql/~ C k and that  either q is not a root of unity or :kq 
is an odd root of unity. Using that  result, together with some (unpublished) 
work of Du-Scott ,  [CPS; (3.7.1)] established the quasi-heredity of A (over 
Z[q• In recent work, Donkin [Do; w has also given an argument for 
the quasi-heredity of Ak without restriction on q. His argument makes use 
of the representation theory of the quantum GL~ studied in [DD] (which 
has the advantage of avoiding the requirement in [PW] that  ql/2 E k); see 
also fM; p.200]. 

However, the cell theory point of view in the present paper is very different 
from that  used in the arguments mentioned above. (The methods are also 
completely unrelated to the theory of cellular algebras [GL].) It is part of 
a new general approach to Hecke endomorphism algebras. Also, as stated 
in its entirety, the Main Theorem, together with its proof, proves in type A 
a conjecture made in [DPS; (2.5.2)] - a statement about cell modules and 
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stratifications for very general Hecke algebras. See Corollary 2.11 and its 
proof for further details. The conjecture demands a very specific relationship 
between A and Kazhdan-Lusztig cell theory. (In particular, it is not enough 
to know just that A is Z-quasi-hereditary.) 

The paper is organized as follows. In Section 1, we recall from [CPS] 
the definition of a Z-quasi-hereditary algebra. (Apart from this definition, 
we also require the local characterization of Z-quasi-heredity given in [CPS; 
(3.3)].) The main result in this section, Theorem 1.7, gives a new criterion for 
checking the Z-quasi-heredity of endomorphism algebras. Since the quasi- 
heredity property behaves well under base change, this result gives in many 
cases a new, and often easier, way to check that algebras over fields are 
quasi-hereditary. In Section 2, we first verify that the hypotheses of (1.7) 
hold for the algebras (1), using the dominance order on A+(n, r). The main 
ingredient here, apart from the homological property of cell filtrations of 
certain induced modules, is some representation theory of symmetric groups 
(already known to Frobenius). Using [KL1; (1.4)] and some elementary 
"equal characteristic" Brauer theory, we easily connect this theory to that 
for the Hecke algebra. We then prove the Main Theorem. Our proof is 
essentially combinatorial and elementary. Also, the integral q-Schur algeb- 
ra setting results in a simpler, more general proof of quasi-heredity than 
the field setting provides. Finally, using deeper results (not necessary for 
the proof of the Main Theorem) involving perverse sheaves and Kazhdan- 
Lusztig polynomials [BB], [BK], and [KL2], we show in (2.13(b),(c)) that 
the formulation of the Main Theorem is "the same" as that in [CPS]. 

N o t a t i o n  and  p re l imina r i e s  

A quasi-poser is a pair (h, <) consisting of a finite set A and a preorder (i. e., 
a reflexive and transitive relation) _< on it. Putt ing x ~ y if and only if x ___ y 
and y < x defines an equivalence relation on A, whose equivalence classes 
are called the cells of A. In Section 2, we will use the preorders ~L and ~LR 
defined in [KL1] on a Coxeter group W, together with the corresponding 
equivalence relations '~L and r'~LR. 

If R is a ring, then we let R-mod (resp., mod-R) denote the category of 
left (resp., right) finitely generated R-modules. Also, let Irr(R) be the set 
of irreducible right R-modules. 

Throughout this paper, Z denotes a regular (commutative) ring of Krull 

dimension < 2 and K is its field of fractions. If M is a Z-module, let 
MK = M | K. In Section 2, we take Z = Z[q, q-l], the ring of integral 
Laurent polynomials in an indeterminate q. The hypotheses on Z will be 
particularly useful because of the following commutative algebra fact: 

(0.1) L e m m a .  Let Z be a regular (commutative) ring of Krutl dimension 
< 2. Let Y be a finitely generated Z-module. Then 

(a) The dual Z-module Y* = Homz (:Y, Z) is projective. 
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(b) Assume that Y is a direct summand of a Z-module of the form X,* 
for some finitely generated Z-module X .  Let ]2 be any k-subspace of YK and 
put V = Y N ]2. Then V is a finitely generated projective Z-module. 

Proof. Because localization at a prime ideal is an exact functor, we can 
assume that  Z is a regular local ring of Krull dimension < 2. Then (a) 
is precisely fAG; Cor., p_  17]. As for (b), observe that  (a) implies that  Y 
is Z-projective. Hence, Y can be identified with its image in :YK, so that  
V = Y N l; is defined (and is finitely generated). A linear algebra argument 
shows that  V is isomorphic to its double dual V** and hence, by (a), is 
projective over Z. (The elementary details that  V -- V** are given in [DPS; 
(1.2.11)].) [] 

S e c t i o n  1: A q u a s i - h e r e d i t y  c r i t e r i on  

Let H be a Z-algebra , which is free of finite rank as a Z-module.  In 
Section 2, we take H to be a generic Hecke algebra. Let T be a right _~- 
module, which is finitely generated and projective over Z. Suppose there is 
a direct sum decomposition 

(1.1) T = ( ~ : ~  
A E A  

in which A is some finite indexing set. Suppose there is also a collection 
{S~}~eh of H-modules, each of which is finitely generated and projective 
over Z. We assume, for each )~ E A, that  there is fixed an increasing filtration 
F~ of l~-module T~ with sections of the form Sv for various L, e A; explicitly: 

(1.2) 
where GriF~ def ~ i + l  ]b-'i ~-, S~,~, ~ /2k,i E A, 0 < i < t (~) .  

" X  t ' A  = , , 

The following result makes essential use of the hypotheses on the ring Z. 
(See above (0.1).) 

(1.3) L e m m a .  With the above assumptions, put A = End~(T) .  Assume, 
for )~ E A, that 

(1.3.1) ExtH(T~/F~,T)  = 0, 0 _< i < t()~). 

For )~ E A, form the left .4-modules 

A(A) = Hom~(SN~, T) and _P(A) = Hom~(T~, T). 

Then 
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(a) For A 6 A, A(A) is a finitely generated projective Z-module. Also, .4 
is a projective Z-module. 

(b) For a A 6 A, form the projective .4-module 15(A) = Hom~(T~,T) .  

Putting G~ dJ  Hom~(Tx/F~,T) ,  0 < i < t(A), defines a (decreasing) filtra- 

tion Gx of the A-module ~5(A) with sections of the form iX(w), for various 
v 6 A; explicitly, we have 

(1.3.2) 
=o, = _ .. .  _ Gt() 0 

where Gr/G ~ def -~ -~ = = G i /Gi+ 1 "~ ~(v~,i), 0 _ i < t(A). 

(c) P de=f @X/5(A ) is a (finitely generated) projective generator for .4- 
rood. 

Proof. To prove (a), fix A E A. We first show that  A(A) --- HomR(Sx,T)  
is a finitely generated projective Z-module. Because T is Z-projective, 

= Homz(S~,T)  is a Z-direct summand of a direct sum of copies of S~. 
Thus, (0.1) is applicable with Y = Hom~K (SxK,TK). We conclude that  

A(A) = Y ~ 1) is Z-projective, as required in the first assertion of (a). The 
second assertion follows in the same way, now using ~" = Endz(T)  and 
V = EndRK (TK). 

It is elementary that  the G/~ defined in (1.3.2) define a filtration on P(A). 
For a given i, there is a short exact sequence 

(1.3.3) 

of H-modules. Applying the functor H o m ~ ( - , T )  to (1.3.3) and using the 
vanishing condition (1.3.1), together with the long exact sequence of Ext ,  
yields that  GriG ;~ --- A(w;~,i) since ~ + 1 / ~  ____ Sv~.~. This proves (b). 

Finally, as a left _~-module, A -~ ( ~  15(A) em~ . Therefore,/3 = ( ~ / 3 ( A  ) 
is a projective generator for the category .4-mod. Thus, (c) holds. [] 

We wish to formulate a condition guaranteeing that  .4 = End~ (T) is 
Z-quasi-hereditary. First, recall the definition of this concept [CPS; (3.2)]. 
(In this definition, Z could be an arbitrary commutative, Noetherian ring.) 
Let A be an arbitrary Z-algebra, finitely generated and projective as a Z- 
module. An ideal J of A is a heredity ideal provided that  

(1.4) 

(1) 
(2) 
(3) 
(4) 

A / J  is Z-projective; 
j =j; 

is projective as a left A-module; 

~7 = End~(J)  is Z-semisimple. 
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(Recall that a Z-algebra /~ is Z-semisimple provided that, for every p �9 
Spec Z,/~(p) = E |  Zp/pZp is a semisimple algebra over the residue field 
Zp/pZp. For further discussion and references to the literature, see [CPS; 
~].) In case/~ is a split semisimple Z-algebra in (1.4(4)) - in particular, if 
E is a direct product of matrix algebras M n ( Z )  - we call J a split heredity 
ideal. 

The algebra A is Z-quasi-hereditary if there exists a "defining sequence" 

(1.5) O= Jo C J: C .. .  c ~ = A 

of ideals in .4 such that, for 0 < i _< t, ~ / Z - :  is a heredity ideal in _~/~_:.  
If each End~i/~_: ( ~ / ~ _ : )  is a split Z-semisimple algebra, then A is a split 
Z-quasi-hereditary algebra. As shown in [CPS; (3.3)], this notion behaves 
well under base change; in particular, if Z -+ k is a homomorphism of Z to 
a field k, then the algebra Ak = A | k is quasi-hereditary. 

Now we can prove 

(1.6) L e m m a .  Let A be a Z-algebra which is finitely generated and projec- 
tive as a Z-module. Suppose that {~(A)}~eA is a family o/(left) A-modules 
indexed by a poset A and that the following conditions hold: 

(1) For ~ �9 A, A(A) is finitely generated and projective as a Z-module; 

(2) For A �9 A, there exists a finitely generated projective A-module _P(A) 
which has a filtration 

(1.6.1) - - - 

where - �9 i .  

(3) In the Grothendieck group K0(.41r we have 

(1 .6 .2)  = + w �9 h .  

(4) For A 6 A, A(A)K is an absolutely irreducible AK-module. For ~ # 

(5) j5 d_a ~ ~(~) is a projective generator for .4-mod. 

Then A is a (split) Z-quasi-hereditary algebra. If  a field k is a Z-algebra, 
then -4k-rood is a highest weight category with weight poser A and with stan- 
dard modules ~(~)k ,  A E A. 

Proof. First, we show that A is Z-quasi-hereditary. Let .4' - End~(P)  ~ 
Since ~5 is a projective generator for .4-mod, the functor 

F ( - )  = Hom~( lb , - ) : -4 -mod  ~ -4qmod 
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is an equivalence of categories. For A E A, let/5'(A) = F(/5(A)) and ~'(A) = 
F(~(A)) .  Then hypotheses (1)-(5) hold with any ~(A) replaced by ~'()~) 
and any P(A) replaced by/~'(A), and it suffices to prove the lemma for A ~.  

Let A1 C_ A be the set of maximal elements inA.  Let e~ E -4~ be an 
idempotent so that  A~e~ -~ (~eA1 -P'(A). By (2), (3), and (4), for A �9 A1, 

we have /5'(A) - ~'(A). Thus, we can assume, for A �9 A, there exists an 
index j(A), such that  

(EA1 

while, for i < j(A), ~ , i  r A1. Assumptions (1), (4) imply that  for A ~ ( 
in A, Homs,(~ ' (A),  ~ ' ( ( ) )  = 0. Thus, the trace ideal J~ = A'e~A' satisfies 

J~- ~= ~AEA Gj(A)'~ By (1), A~/J~ is Z-projective and that  ~ is a projective 

left .4~-module. Thus, conditions (1.4(1,2,3)) hold for J = J1- 
Each End S, (~'(A)) is a finitely generated Z-module satisfying 

Ends, (~ ' (A))K -= K. 

Since Z is integrally closed in K, Ends,(~(A))  -~ Z. Therefore, E1 = 
End S, (j~) is a direct product  of matrix algebras Mn(Z), and hence is split 
Z-semisimple. Thus, (1.4(5)) holds, and J~ is a split heredity ideal of _4~. 

Now the family {~'(~)}AeA\A1 satisfies our hypotheses for the algebra 
A'/J~. Inductively, it follows that  .~' is a split Z-quasi-hereditary algebra. 

To prove the last assertion, first let k -- k(p) for some p E Spec Z, where 
k(p) = Zp/pZp. By [CPS; (3.3)], 0 = ~ k  C Jlk C . . .  C Jnk is a defining 
sequence for the quasi-hereditary algebra -4k. For any i, ~()~)k is a projective 
Ak/~k-module ,  which is indecomposable since Ends(A(A)) ~ Z. If Lk(A) 

is the irreducible head of ~(A)k, then it follows that  the Lk(A), A E A, are 
the distinct (absolutely) irreducible .4k-modules. It is now clear that  Ak- 
mod is a highest weight category with poset A and with standard objects the 
~()~)k, A E A, and that  this remains true for any extension field of k. [~. 

Put t ing  everything together yields the criterion below for checking that  
an endomorphism algebra .4 = Endfi (T) is Z-quasi-hereditary. In the next 
section, where Z = Z[q, q-l], we will see the advantage of our integral setup: 
First, elementary Brauer theory and Frobenius' representation theory for | 
permit  an easy verification of the conditions (1)-(3) below over Z. Second, 
the Ext 1-vanishing condition (4) - which one would not expect to hold 
in general over a field k - does hold over Z, thanks to the nature of the 
Kazhdan-Lusztig basis for H. This is precisely the homological property 
mentioned in the introduction and discovered in [DPS]; see the discussion 
above (2.7) below. 
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(1.7) T h e o r e m .  Let .4 = End~(T),  with T as in (1.1). Let {Sx}~eh be a 

collection of of ~I-modules, each of which is finitely generated and projective 
over Z .  Suppose that each T~ has a filtration F~ as in (1.2). For )` E A, 
put ~(A) = Hom~(S~,T) E Ob(A-mod). In addition, assume that A is a 
poset, and that the following conditions hold: 

~I g i8 a split semisimple algebra. 

For A E A, S~K is an irreducible HK-module. If  )` r ~, then S~K 

(1) 

(2) 

(3) 

(4) 

we have  = e 

For )` E A, the Ext 1-vanishing condition (1.3.1) holds. 

Then A is a (split) Z-quasi-hereditary algebra. I f  Z --+ k is a homomor- 
phism of Z to a field k, then the highest weight category .4k-rood can be 
taken to have weight poset A and standard modules ~()`)k,  )` E A. 

Proof. We need only check the hypotheses of (1.6) hold. By (1.3), both 
(1.6(1)) and (1.6(2)) hold. By the definition of .4, (1.6(5)) is automatic. 
Finally, (1.7(3)) implies condition (1.6(3)), while (1.7(2)) yields (1.6(4)). [] 

Sec t ion  2: T h e  m a i n  resul t  

Fix a positive integer r, and let W = ~ r  be the symmetric group of 
degree r, Let S be the set of involutions (i, i + 1), 1 < i < r, so that (W, S) 
is a Coxeter system. Let l : W ~ Z + be the corresponding length function 
and let < be the Chevalley-Bruhat partial order on W. Finally, recall that 
Z = Z[q, q-l] (q an indeterminate) in this section. 

We will make some limited use of the classical characteristic zero represen- 
tation theory of W. Let A+(r) be the set of partitions A = ()`1,)`2,... ) ofr .  
For a positive integer n, let A + (n, r) be the set of partitions of r into at most 
n nonzero parts. Given )`,# E A+(r), put )` _ # i f )` l+. . .+)`~ _ # i + . . . + # i  
for all i. Then <~ defines a poset structure (the dominance order) on A + (r), 
and A+(n,r)  is a coideal for all n. For A E A+(r), let Y(A) be the Young 
diagram of shape A. Let t ~ be the tableau of shape )` obtained by filling in 
the boxes in the first row of Y()0 consecutively with the integers 1, 2, . . .  , )`1, 
the second row with the integers A1 + 1, . . .  , A1 +),2, etc. The group W acts 
on the set of all tableaux of shape )` with entries 1, 2 , . . .  , r and the Young 
(or parabolic) subgroup W~ is defined to be the row stabilizer of t ~. Thus, 
W~ --- | x |  x . . . .  

The generic Hecke algebra H is a Z-algebra which is a free Z-module 
with basis {r~}~ew, satisfying the relations 

(2.1) Tsw, 8W ~> W, 
Ts-r  = (s S, w W ) .  

qTsw + ( q -  1)Tw, SW < W 
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We form the discrete valuation ring O = (~[q• If m denotes its 
unique maximal ideal, then O/m -~ Q, while K -- (~(q) is the fraction field of 
(.9. The (.9Lalgebra ~ '  = Ho  serves as an intermediary between the algebras 
HK and Ho/m = HQ ~- QW. The group algebra QW is classically a split 

semisimple algebra~ as is the Hecke algebra HK by [BC]. For s E Irr(Hg),  
choose an H~-lattice L for s i. e., an H~-module L which is free over O 
and satisfies LK ~ L. Let LQ = L | (~ E Ob(mod-QW). The elementary 
theory of Cartan matrices for finite rank algebras over discrete valuation 
rings is now applicable; in particular, [B; (1.9.6)] implies that the s ~ LQ 
is a well-defined (dimension preserving) bijection I r r (Hg)  -+ Irr(~W) from 
irreducible HK-modules to irreducible QW-modules. Classically, Irr((~W) is 
indexed by A + (r). For )~ E A + (r), let Sx be the associated irreducible (~W- 
module, and let ~K E Ir r (Hg)  correspond to Sx under the above bijection. 

We need to make use of some elementary Kazhdan-Lusztig cell theory 
for the Coxeter group W, [KL1]. For (x, y) E W • W, let Px,y be the asso- 
ciated Kazhdan-Lusztig polynomial, and set Cy = q-~(y)/2 ~x<y Px,y~'x E 

~Io = ~I |  Z[ql/2, q-1/2] �9 Thus, {C~}ycw is one of the two Kazhdan- 

Lusztig bases (considered in [KL1]) for the generic Hecke algebra H0 over 
the ring Z[ql/2, q-1/2]. Put  C + = qt(y)/2~, so that {C+}yeW is a Z- 

basis for H. The preorder <_L defined on W in [KL1] has the property 
hC + E ~-~w<LyZC+ for any h E H and y E W. Similarly, there is a 

preorder _<R on W (given by x <:R Y if and only if x -1 ~L y-l)  and 
C+h E ~w<ny ZC+ for any h E H and y E W. If s ~ S and sy < y (resp., 
ys < y), then TsC + = qC + (resp., C+'rs = qC+). 

The cells associated to <:L (resp., _~R) are called Kazhdan-Lusztig left 
cells (resp., right cells) of W. For example, the left cells are the equiva- 
lence classes in W with respect to the equivalence relation ~L given by: 
x ~L Y ~ '." x ~L Y&Y <--L x. Clearly, each Kazhdan-Lusztig left cell 
w C_ W defines a left H-module/~w -- H < ~ / H < ~  (i.e., a left cell module), 
where, fixing some w E w, we put 

(2.2) and zc . 
yEW yEW 
y~Lw y~_LW,YqbLW 

A linear ordering on the set of left cells compatable with <_L determines a 
filtration o f /4  as a left H-module with sections left cell m o d u l e s / ~ .  

Let ~_LR be the preorder on W generated by the preorders _~L and <_R- 
The set ~ of cells defined by _<LR is the set of Kazhdan-Lusztig two-sided 
cells in W. The preorder ~LR induces a poset structure on 2, still denoted 

<_LR. 
For the following result, we require the .-operations on W. These are 

defined in [KL1; (4.1)], which contains all the properties we need. Given 
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w 6 W, the definition of w* depends on an explicit choice of s, t 6 S such 
that st has order 3 and such that the set T~(w)~{s,t} has cardinality 1. 
Here 7~(w) --- {s 6 S[ws  < w} is the right-set of w. Suppose that such a 
pair s, t has been fixed relative to w 6 W, so that w* is defined. If y ~L w, 
then 7~(y) = 7~(w) and y* is defined for the same pair s, t; therefore, if w 
is the left cell in W containing w, we can define w* -- {y* [y E w}. For our 
purposes it will not be necessary to explicitly mention s, t when defining w* 
o r  02". 

(2.3) L e m m a .  For left cells w, w', the left cell modules E~ and E~, are 
isomorphic if and only if w and w' are contained the same two-sided cell ~. 
For ~ 6 ~, let Ee denote the module E~ for any left cell w contained in ~. 
The EeK, ~ 6 E, are the distinct irreducible t-IK-modules. 

Proof. By [KL1; p. 177], ifw is a left cell contained in ~, then w* -- {w* I w 6 
w} is also a left cell contained in ~. In the generic Hecke algebra H0 over 

! 
Z[q1/2, q-1/2], if hC~w ~ ~X~LWax(h,w)C~ mod ~Z<LwZC~z, then [KL1; 

= ' (h,w*) (i. e., the left cells w and (4.2)] proves, in effect, that a~x(h, w) a~. 
w* have the same W-graph, for the C~w-basis). I fhC + - ~X~LW ax(h, w)C + 
rood ~'z<Lw ZC+, the definition of the C +, implies that 

c~x(h,w) 1 /2-1 /2  , , -  , 1 /2-1/2  , , ,  .~ =qw qz ax(n, w ) = q w  qx ax*tn, w ) 
_1/2~-1/2 -1/2 1/2 . , ,  . ,  

=qw qx qw* qx* a~ [a,w ). 

Here qw ---- q~(W)12 etc. Now a direct calculation verifies that the map 

+ Z z c :  + Z z c : ,  w e 
Z<L~A Z<LW* 

defines an isomorphism J ~  -~ / ~ , .  (In checking this fact, it is necessary 
to observe that w and w* have opposite parity.) Since any left cell in ~ can 
be obtained from a fixed left cell by applying asequence  of *-operations 
(by [KL1; p. 177] again), it follows that E~ ~ E~, if w and w' lie in the 
same two-sided cell ~. Since any irreducible ~rK-module must appear as a 
summand of some /~K,  the remaining statements follow by an elementary 
counting argument, using [KL1; (1.4)]. [] 

(2.4) Remark. Left cell modules are defined using a different Kazhdan- 
Lusztig basis {Cy} of H in [KL1]. In JELl; (1.4)], a version of the above 
lemma is established for these modules. Graham [G; (2.12)] has given an 
elementary combinatorial proof of this fact. 

For ~ 6 E, form the dual module S~ -- Homz( /~ ,  Z) 6 0 b ( m o d - H ) .  
(The Sr are the dual left cell modules discussed in [DPS; (2.5)]. It is not 

hard to see, using a comparison over AK and a purity argument, that  Sr 



q-SCHUR ALGEBRAS 43 

identifies with a Specht module for H as defined in [D J1; w However, we 
do not need this fact.) By (2.3), the S~K, ~ E ~, are precisely the distinct 
irreducible right HK-modules. Thus, there is a bijection ~ ~ A + (r) of sets 
satisfying S~K -~ S ~ ) .  For )~ E A+(r), we sometimes write S:~ for the right 

 -module if = 
We wish to apply this theory to q-permutation modules. If A E A+(r ) . le t  

x~ = )-~wew~ T~. We will consider both  the left q-permutation module Hx~ 

and the right q-p~mutat ion module x:~H. For convenience, write T:~ = x:~H. 
The map IND : H -+ Z, Tw ~-~ qt(W), defines a linear character, the trivial 
or index character, on H. If _~  is the subalgebra of _~ generated by all Tw, 
W E W~, and IND:~ -- I N D I ~ ,  then we can reinterpret T~ as the induced 

module T~ = indH IND:~. Because H admits a symmetric, associate pairing, 

the modules Hx~ and x~H are related to each other by duality: 

(2.5) Homz(Bx~, Z) ~ z~B. 

See [D J1; w or [DPS; (2.1.9)]. 
For A E A+(r), let W ~ = {y E W l y s  < y, Vs E SNW~}; thus, W ~ is a 

set of left coset representatives of the Young subgroup W~ in W. By [DPS; 
(2.3.5)], _~x~ has basis {Cy + [y E W~}. This fact, together the discussion 

after (2.2) above, implies that  there exists a H-module filtration of Hx~ 
with sections which are isomorphic to left cell modules E~. Applying the 
exact duality functor ( - )*  = H o m z ( - ,  Z) and using (2.5), this filtration 
determines a filtration F~ on T~ with sections of the form S~, ~ E .~.. We 
call F~ a dual left cell filtration of T:~. 

For any A E A+(r), T~ de___f T~Q ~ indW~Q is the permutat ion module 
of W~ in W. Frobenius tells us that  there is a triangular decomposition 
T~ -~ S~ ~ ~ u ~  s~d'" Thus, for ~ E ~, 

(2.6) = �9 0 ' - ' ~ K  " 

a(r 

Thus, if ~ E A+(n,r) ,  then Su appears as a section in a dual left cell 
filtration _P~ of T~ only if # E A + (n, r). (Keep in mind that  A + (n, r) is a 
coideal in A+(r) with respect to the dominance order.) The filtration _~ 
has the strong homological property that  

(2.7) Ext~(T~/F~,Tu) = 0, Vi, # E A+(r). 

This fact is proved in [DPS; (2.3.9.2)]; by means of dimension shifting, the 
argument for it ultimately comes down to the fact that  the Kazhdan-Lusztig 
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basis vectors C + for the induced modules Hx~ behave well under base- 
change. With these preliminaries, we now prove 

(2.8) T h e o r e m .  The algebra A = Sq(n,r) defined by display (1) in the 
introduction is a Z-quasi-hereditary algebra. Let 

(2.8.1) T =  @ T;~. 
~EA+ (n,r) 

For )~ E A+(n, r), define ~()~) -- Hom~(S~, T). Then for any field k which 
is a Z-algebra, Ak-mod is a highest weight category with poset (A+(n, r), _) 
and standard objects ~()~)k, ~ �9 A+(n, r). 

Proof. We will apply (1.7) for the Hecke algebra H acting on T as defined in 
(2.8.1) with A+(n, r) given the dominance order ~. By definition, each dual 
left cell module S~, A E A+(n,r) ,  is a finitely generated free Z-module. As 
discussed above, each T~, )~ �9 A+(n,r) ,  has a filtration Fx as in (1.2). Con- 
ditions (1.7(1),(2)) all hold by previous discussion, while (1.7(3)) is implied 
by (2.6). Finally, (1.7(4)) holds by (2.7). [] 

We are now ready to give the proof of the Main Theorem from the in- 
troduction. By (2.8), ,4 is Z-quasi-hereditary. Let .=(n, r) -- a - l (A+(n,  r)), 

N 

given poset structure induced from (~, op ~--LR)" Let A, T, etc. be as in 
(2.8). Let k be any field which is a Z-algebra. We show that Ak is a 
highest weight category with poset (~(n,r) ,  < ~ )  and standard modules 

Fix ~ �9 G(n, r). Let /~ be the Z-submodule of ~Ixa(~) spanned by all 
Kazhdan-Lusztig basis elements C + such that there exists y �9 W satisfying 
w <_L Y �9 4. Observe that /~ is an H-submodule of Hxa(s which is evidently 
filtered by certain left cell modules E~. By [DPS; (2.3.7)], we can choose 
a filtration ~a(~) of [Ixa(~) by left cell modules so that E~(~) = /~ for 
some i. Thus, the filtration G~(~) = Hom~(E a(f)*,T) of/B(a(~)) satisfies 

~ ( r  = /~,o d~ 2 HomB(/~*,T) for some i. Also, the top filtration term 

Let Pk(a(~)) be the projective cover of ~(a(~))k. Since P((~(~))k is also 
projective and has ~(a(~))k as a homomorphic image (by (2.6) 2, (2.8) and 
the axioms for a highest weight category), there is a surjection P(a(~))k 
Pk(~(~)). Let Lk(~(~)) denote the irreducible head of Pk((~(~)), By (2.6), 
any A-section of P(a(~))/E *~ has the form A(#) for some #~a(~). For such 
a/z, (2.8) implies that H o m ~  (~(#)k, Lk(c~(~))) = 0, so that the composite 

/~o __~/5(a(~)) k __+ Pk(a(~)) --+ Lk((~(~)) is nonzero, and, hence, surjective. 
Thus, there is a surjection E~ ~ -~ Pk(~(~))- Therefore, Pk(c~(~)) is a direct 
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summand of E ~ ,  and all the terms of its ~k-filtration appear among those 
of the ~k-filtration of ~ o .  Thus, if ~(a(())k is a section in the ~k- 
filtration of Pk(a(~)), then ~ _>~ ~. Hence, Ker(Pk(a(~)) ~ ~(a(~))k) has 
~k-sections ~(~(~))k,  ~ op >Ln 

Finally, if [~(a(r : Lk(a(~))] r 0 for ~ r ~, then 

Homzk (Pk(a(~)), ~,(a(~))k) # 0. 

Let V(a(~)) be the Z-dual of the analogue of ~(a(~))  in the category mod-  
.4 of right A--modules. Then V(a(~))g  -~ ~(a(~))g. Thus, V(a(~)) is also 
a lattice for ~(a(~))K, and a standard argument (see, e.g., [DPS; (1.1.2)]) 
implies that  V(a(~))k has the same composition factors as ~(a(~))k.  Hence, 

# 0. 

Therefore, ~(a(~))k appears in the  A-filtration of Pk(c~(~)) by Brauer- 
Humphreys reciprocity. The previous paragraph implies that  ~ op <Ln C- 

Thus, -~k-mod is a highest weight category with poset (2, _<~P) and with 
standard objects {~(a(~)k}~e~(n,r). Put t ing  ~(~) = ~(a(~)) ,  ~ e ~(n , r ) ,  
this completes the proof of the Main Theorem. 

Before proving the next result, we require the following elementary com- 
mutative algebra result: 

(2.9) L e m m a .  Let Z be a regular commutative ring of KrulI dimen- 
sion at most 2, and let B be a Z-algebra, finitely generated and projective 
as a Z-module. Suppose X, Y are B-modules which are finitely generated 
and projective over Z. Assume Ext ~ (X,Y)  ~ O. Then there exists p E 
Supp(Ext~(X,Y))  such that ExtlBk(Xk, Yk) r O, where k is the residue 
field k(p) = Zp/pZp. 

Proof. The assertion is clear if 0 = p E Supp(Ext ~(X, Y)). This is because 
Ext ~k (Xk, Yk) identifies in this case with the localization Ext ~(X, Y)p. If 
p E Supp(Ext~(X,  Y)) has height 1, then the localization Zp is a discrete 
valuation ring, in which case the result is well-known (and is an easy exer- 
cise). Thus, we may assume Krull dimension of Z is 2, and that  there 
is a maximal ideal p E Supp(Ext~(X,Y)) ,  and no smaller prime ideals. 
Localizing at p, we can assume that  Z is local. 

The ideal p must annihilate some nonzero e E Ext I ( X ,  Y). Since Z is 
regular of Krull dimension 2, we can choose p E p so that  Z/pZ is a discrete 
valuation ring. We claim that  Ext 1B/pB (X/pX, Y/pY) ~ Ext 1B (X, Y/pY) 
0. The result will then follow from the discrete valuation ring case. 

The natural  map Ext ]~(X, Y) -+ Ext ~(X, Y/pY) is nonzero, since other- 
wise multiplication by p is surjective as an endomorphism of Ext ~ (X, Y). 
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But surjectivity would imply that multiplication by p is an isomorphism, 
whereas pe = 0. Thus, Ext ~ (X, Y / p Y )  r 0, as required. [] 

(2.10) Corollary. Let A, etc. be as in (2.8). Put 

=_(~, r) = ~-1 (h + (~, r)). 

We have 

(a) Ext A(A(~(~)),A(~(~)) 0 unless ~ op = --<LR ~ (r ~ ~ =--(~, r)). 

(b) A sequence of defining ideals 0 = Jo C J1 C . . .  C Jn = A can 
be chosen for the Z-quasi-hereditary algebra .4 with respect to any listing 
~1, ~n of ~(n,r)  with i < j whenever ~i op �9 . ,  >LR ~J, and which satisfies 
( ~ / ~ - 1 ) , ~  -~ 5( , (r  for some positive integer d,. 

(c) The modules {A(~(~))}~e~.(n,r) form a strict stratifying system for A- 
op mod, in the sense of [DPS; (1.2.4)], with respect to the poser (-.(n, r), --<L/~)" 

Proof. Part (b) follows easily from (a) and the Main Theorem, after "re- 
arranging" the filtrations of the ~5()~)'s. Similarly, (c) follows from (a) by 
taking P()~) = Hom~(T~, T). 

To prove (a), suppose that Ext ~(A(a(r A(~(~)) r 0. By (2.9), 

Ext Ak (A(a(r A(~(~))k) r 0 

op for some field k which is a Z-algebra.  By the Main Theorem, ~ )LR ~" [] 

We remark that (2.10) also holds with the order op <LR replaced by the 
dominance order _. This is implicit in [CPS]. 

(2.11) Corollary. The assertion of Conjecture [DPS; (2.5.2)] regarding a 
strict stratification is true for Sq(r, r). 

Proof. The conjecture [DPS; (2.5.2)] asserts stratification properties of an 
algebra A+ = EndB(T+), where T+ = T(~)~ ,  2 having certain filtration 
properties. In the present case, we take -~ = 0, so that the strict stratifica- 
tion assertion of the conjecture is essentially (2.10(c)). Note that the poset 
(~, < ~ )  is the minimal quasi-poset (~min, _<~) associated to the quasi- 
poser (12, _<~) given in [DPS; (2.5.2)]; see the remark after [DPS; (1.2.4)]. 
Note also that the algebra Sq(r, r) is Morita equivalent to the one described 
in [DPS; (2.5.2)]. [] 

If Z -+ Z' is a homomorphism of Z into a commutative, Noetherian ring 
Z' (e.g., a field k), let 

(2.12) Sq(n ,r ,Z ' )  EndRz,( ~ " ~ '  -- !nd~z ,  IND,), 
AEA+ (n,r) 
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where J~z' = / t  |  Z' ,  etc. By [DPS; (2.3.8)], Sq(n ,r ,Z  1) -~ Sq(n,r)z, .  
This fact is essentially well-known, though the proof in [DPS; (2.3.8)] is in 
the same spirit as that for (2.7). In particular, the above results apply to 
the classical q-Schur algebras over fields which are Morita equivalent to the 
algebras Sq (n, r, k). 

The following remarks give two alternative proofs of the Main Theorem. 
Both proofs require deep properties of cells; thus, they are not as elementary 
as the argument given above. In preparation for this, we also explicitly 
identify the subposet ~(n, r) used in the Main Theorem. 

(2.13) Remarks. (a) It is well-known that Kazhdan-Lusztig cells in W = | 
are determined by the Robinson-Schensted correspondence (see [BV]) which 
takes w E W to a pair (P(w), Q(w)) of standard tableaux of the same shape 
with the property that y ~ L R  ~1) if and only if the shape of P(y) is the same 
as the shape of P(w). (A standard tableau is a tableau of the form tax  
(x E W) which has increasing rows and columns; A is called its shape. Here 
t ~ is the standard tableau of shape A defined at the start of this section.) 
For )~ E A+(r), let ) / b e  the dual partition of A, namely, the partition whose 
Young diagram is the transpose of y(A), and let w0,;~ be the longest word 
in W~. Then P(wo,~) is the transpose of the standard tableau t~; thus, 
we obtain a bijection /~1 : ~ --~ A + (r) such that, if fll (~) = A', then 
contains the longest element wo,~ of W~. Let fl : ~ --+ A + (r) be defined by 
~(~) =- ~1 (~)'. We claim we have an equality ol -~ ~ of functions. Indeed, as 
seen from remarks immediately above [DPS; (2.3.7)], we have, for any ~ C ~, 

_<n/~ /~-1(c~(~)). So, if ~ is maximal (relative to _~LR), then Z(~) = a(~). 
Now our claim follows by induction. 

Thus, we can explicitly describe the set S(n, r) as the set of all two-sided 
cells ~ containing some w0,~, A E A+(n,r). 

(b) By (a), we see now that the Main Theorem follows from (2.8) if 
op fl defines a poset isomorphism (~,_<LR) ~ (A+(r),---)" A proof of this 

isomorphism has been given by Shi IS]; it turns out to be a special case of a 
conjecture of Lusztig [L1; Conjecture D]. For the reader's convenience, we 
include another, shorter proof, obtained by a further consideration of the 
Robinson-Schensted correspondence. It suffices to prove 

(2.13.1) Wo,tt ~--LR WO,)~ ~ # ~-- A. 

For w E W, let s -- {s e S lsw < w} be the left-set ofw. By [Du; (3.3)] 
we see that  # _ A if and only if there exists a w E W such that s D 
Z:(w0,;~) and Wo,~ ~"L w. This implies Wo,~ ~LR ~OO,A since w --<R w0,~. The 
converse implication in (2.13.1) follows from [LX; (3.2)]. (This latter result 
requires the positivity of the Kazhdan-Lusztig polynomials, proved using 
perverse sheaves in [KL2] via ~tale intersection cohomoIogy. The argument 
in [S] also uses positivity.) 
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(c) By [L1; (4.1)] or [L2; (6.3)], we have for y,w e W, 

(2.13.2) Y _<L w and y "L~ w ~ y "~L UL 

As remarked by Lusztig [L1], this simple sounding result appears to require 
the Kazhdan-Lusztig conjecture [KL1; (8.1)], proved in [BB], [BK], and 
again involving perverse sheaves [KL2]. Using (2.13.2), we thus obtain a 
triangular decomposition 

" "~  K �9 

Now the proof of (2.8) works with respect to the poset (E, op --<LR), which also 
proves the Main Theorem. 
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